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ABSTRACT 

A major earthquake in Los Angeles, San Diego or the San Francisco Bay Area is expected to 

result in numerous fires.  A survey of fire and water agencies (with responses from those serving 

about one third of urbanized California) found poor understanding of the post-earthquake fire 

issue, and poor communication between fire and water agencies on this issue. In order to 

mitigate this problem, it is recommended that meetings should be held within the California fire 

service and the California water distribution community, to highlight this problem and enlist both 

communities in an effort to develop state-wide requirements for post-earthquake firefighting 

water supply target goals, to be achieved by a given date.  Possible ways of assuring satisfactory 

post-earthquake water supply may include development of a standardized California portable 

water supply system (PWSS) for use in major urban areas, consideration of a saltwater high 

pressure system for the Los Angeles Metropolitan Area (Los Angeles and Orange counties), to 

be used in conjunction with the PWSS, and development and deployment of neighborhood 

equipment container caches, for use by NERT, CERT and other volunteers, to enhance their 

currently very limited post-disaster firefighting capability.  
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EXECUTIVE SUMMARY 

Fire following earthquake (FFE) is a significant problem in California.  Historically, every 

significant earthquake in California has resulted in multiple simultaneous fires that have strained, 

and at least in 1906 overwhelmed, the fire service.  In both the 1971 San Fernando and the 1994 

Northridge earthquake, there were over 100 ignitions.  Other disasters clearly demonstrate that 

massive fires are a problem in California under even non-earthquake ignitions, when only one or 

a few ignitions are involved – the numerous wildland urban interface fires that occur in 

California almost every year are only the most telling example of this – another example is the 

1988 First Interstate Bank Fire, which totally destroyed 4 floors of the state’s tallest building (at 

that time) and severely damaged the rest of the building through water and smoke damage. The 

2008 ShakeOut and associated Golden Guardian Exercise examined potential fires assuming a 

Mw 7.8 southern San Andreas event affecting Southern California on a morning in mid-

November, with breezy, low humidity conditions.  The analysis found approximately 1,600 

ignitions occur, with the central Los Angeles basin experiencing hundreds of large fires.  The 

final loss was estimated to be hundreds to perhaps a thousand lives, and approximately 200 

million sq. ft. of residential and commercial building floor area, worth perhaps as much as one 

hundred billion dollars, and virtually all insured.  

Regarding insurance, the industry has played a key role in U.S. fire protection for over 

100 years, and continues to do so today.  This is due in part to the enormous exposure of the 

industry - about 9.5 million residential and 1 million commercial property insurance policies 

were in force in California in 2009, with a total value of $ 4.7 trillion, almost all of it exposed to 

fire following earthquake.  The insurance industry through its periodic review of fire departments 

and their water supplies seeks to assure that fire departments remain well trained and equipped, 

and adequately supplied with water, for normal firefighting conditions.  However, guidance 

provided by the insurance industry for adequacy of public water supplies does not mention or 

consider earthquake. This study examines a more densely built-up neighborhood in San 

Francisco, where it is shown that the water required for post-earthquake conflagration is far in 

excess of that required by current insurance standards.  Further background and detail on this 

aspect is provided in Appendix C. 
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While the fire service in California since 1906 has professionalized and advanced 

technologically to the point of being perhaps the best in the world, it has not been tested by a 

major earthquake since 1906.  Water systems in California have failed in virtually all urban 

earthquakes in California – as a result, water departments have engaged in major reviews of their 

system’s seismic vulnerability, and spent hundreds of millions of dollars seismically upgrading 

their systems. Exemplary programs include LADWP and MWD in Southern California, and 

EMBUD and San Francisco’s Hetch Hetchy system in Northern California, to name a few of the 

larger programs.   

Nevertheless, the Achilles Heel of these systems, and the entire fire following earthquake 

problem, remains the distribution system – despite massive seismic retrofit programs, it has not 

been possible to replace all of the distribution systems, and it is quite possible that numerous 

distribution breaks will occur in the high intensity areas of a major earthquake, which are also 

the areas most likely to have fires.  Distribution breaks will not cause system-wide loss of water, 

but will cause loss of water in the neighborhood of the fire – for the firefighter, effectively the 

same thing.  Knowing this, fire departments have identified and developed plans to access 

alternative water sources – in most cities for example, these include swimming pools, tanks, 

creeks, ponds and storm water drains.  San Francisco, due to its experience in 1906, has gone far 

beyond this, to develop and maintain the high pressure seawater-supplied Auxiliary Water 

Supply System (AWSS) and 172 cisterns (underground water tanks spread throughout the city). 

In fact, San Francisco in June 2010 approved $104.2 million to enhance this system as part of a 

$412.3 million bond, which also included a new police/fire headquarters and rehabilitation of 

existing fire stations. However, most other cities, particularly Los Angeles, San Jose and San 

Diego, lack such systems and, quite worryingly, the capacity of their water supplies (normal, and 

alternative) have been little examined vis-à-vis the demands that multiple simultaneous post-

earthquake fires will place on those supplies.  

To further examine this issue, a survey of fire and water agencies was conducted. 

Responses were received from agencies representing about one third of urban California.  The 

survey responses are detailed in the report – key findings included: 

Most larger urban fire and water agencies could be better informed regarding the 

specifics of their earthquake risk  
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Earthquake is recognized as a key issue by fire and water agencies, although many 

water agencies see provision of potable water as a higher priority in some cases than 

firefighting.   

Water agency system vulnerabilities are not well understood by fire agencies, 

although water and fire agencies both generally believe most municipal water supply 

systems are unreliable in a major earthquake.   

Some fire agencies have vigorously addressed this issue, developing innovative high 

pressure and/or portable water supply systems.  Many have not.  

Some water agencies have alternatives given loss of normal water supply, but many 

are not well enough equipped to actually move water a significant distance.   

Fire and water agency liaison is not very good, and is often somewhat indirect solely 

through larger enterprise-wide coordination meetings.  Emergency firefighting water 

supply is not a focus. 

In summary, this report finds that the risk of post-earthquake conflagration in urban 

California is very significant, and that the crucial need for post-earthquake firefighting water 

supply is falling through a gap.  Reasons why this is happening are briefly explained, but the key 

issue is how to correct the situation. To do so, the following general recommendations are 

provided:  

1. Highlight the problem to the California Fire Service, for example by a meeting of the 

Metro Fire Chiefs, perhaps in conjunction with the Seismic Safety Commission and 

CalEMA.   

2. Enlist the Water Community via a joint meeting of key senior fire chiefs and water 

department managers, perhaps held under the auspices of the Seismic Safety Commission 

and CalEMA. 

3. Develop state-wide requirements for development of post-earthquake firefighting water 

target goals, and that water and fire agencies should develop and submit plans for 

measures intended to achieve these goals by a given date.   

Additionally, three specific measures are suggested for further study: 
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Development of a standardized California portable water supply system (PWSS) that 

would be deployed in major urban areas.  This PWSS system would suffice for the 

San Francisco Bay Area.  

Development of a saltwater high pressure system for the Los Angeles Metropolitan 

Area (Los Angeles and Orange counties), to be used in conjunction with the PWSS. 

The LAM area saltwater system is quite feasible, if existing larger storm drain 

channels can be used for pipeline rights-of-way.  

Development and deployment of neighborhood equipment container caches, for use 

by NERT, CERT and other volunteers, to enhance their currently very limited post-

disaster firefighting capability.  
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1 Introduction 

1.1 PURPOSE OF THIS REPORT 

The purpose of the paper is to qualitatively review the current status of emergency water supply 

in California vis-à-vis fire following earthquake, and provide a series of recommendations for 

improvements if/where needed.  While some recommendations will be possible given 

information in hand, recommendations for some other potential improvements (while probably 

needed) won’t be possible to make given current information, so that a final recommendation 

will be an outline of necessary research. 

The focus of the paper will be on fire following earthquake in urban areas (including the 

special problem of tall buildings).  Low density communities and non-earthquake fires (e.g., the 

urban wildland interface fire problem) will not be treated except insofar as relevant to the fire 

following earthquake problem. 

The audience for this report is primarily the fire and water agencies that serve urban 

California.  In various places, such agencies may be referred to as “water departments” but this 

should be understood to also include water districts and investor-owned water companies. 

Similarly, while the term “fire departments” is often used, it should be understood to refer to all 

relevant firefighting entities, including city fire departments, fire protection districts, regional 

and state agencies, and private and corporate fire protection. 

1.2 BACKGROUND OF EARTHQUAKES AND FIRE FOLLOWING 
EARTHQUAKES 

Earthquakes cause damage by a variety of damaging agents, including fault rupture, shaking, 

liquefaction, landslides, fires, release of hazardous materials, tsunami, etc.  Shaking is present in 

all earthquakes, by definition, and is the predominant agent of damage in most earthquakes. 

Occasionally, however, building density and flammability, meteorological conditions and other 
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factors can combine to create a situation in which fire following earthquake, or post-earthquake 

conflagration, is the predominant agent of damage. Large fires following an earthquake in an 

urban region are relatively rare phenomena, but have occasionally been of catastrophic 

proportions.   Most disastrous earthquakes in fact cause relatively few fires – recent major 

disasters such as the 2004 Indian Ocean earthquake and tsunami (250,000 killed), 2005 Pakistan 

(80,000+ killed), 2008 Wenchuan (80,000 killed) and 2010 Haiti (200,000+ presumed killed) 

have been accompanied by few if any major fires.  

However, in particular regions, earthquakes tend to cause many fires, some of which can 

be disastrous.  In both Japan and the United States, fire has been the single most destructive 

seismic agent of damage in the twentieth century. The fires following the San Francisco 1906 

and Tokyo 1923 earthquakes rank as the two largest peacetime urban fires in man’s history, and 

were both terribly destructive.  The 2011 Easter Japan earthquake and tsunami caused over 300 

fires, several of which grew to conflagration proportions.  While not widely perceived today by 

the public or even many professionals in the earthquake or fire service fields, fire following 

earthquake is recognized by professionals specializing in this field as continuing to pose a very 

substantial threat in both countries. 

Although fire following the 1906 earthquake was the overwhelming cause of the damage 

San Francisco and Santa Rosa, and has continued as a significant cause of damage since, it has 

received relatively little attention in the US.  Why fire following earthquake has received little 

attention is due to several factors: 

a) Earthquakes historically have been the professional concern of seismologists and 

structural engineers, who as a class of professionals are largely uninformed of 

fire, 

b) Fire protection engineers and fire service personnel have similarly ignored 

earthquakes, seeing their goal as the mitigation of chronic fire losses by code 

implementation and other techniques, rather than as earthquake response, 

c) Major conflagrations were a common occurrence in the US prior to WW2, so that 

the 1906 experience was seen as more of a conflagration than an earthquake 

phenomenon. 
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d) The subsequent decline in US urban conflagrations, due to improved fire and 

building codes, and to improved fire service response due primarily to better 

communications, training and equipment, has only increased this sense of “it can’t 

happen here”. 

e) Lastly, not all, and particularly most smaller, earthquakes cause few significant 

fires.  

This last point has been crucial to contributing to the lack of attention to post- earthquake 

fire: 

a) The lack of a major urban US earthquake since 1906. It is little appreciated that it 

takes a great earthquake, striking a large urban region, to create the conditions of 

dozens or hundreds of ignitions that overwhelm the fire service and result in a 

conflagration. San Francisco 1906 and Tokyo 1923 fulfilled this condition. 

Earthquakes since 1906 (1933 Long Beach, 1964 Alaska, 1971 San Fernando, 

1987 Whittier in the United States, 1989 Loma Prieta and 1994 Northridge in the 

US, and in Japan the 1968 Tokachi-oki, 1978 Miyagiken-oki, 1984 Nihonkai- 

chubu, 1995 Kobe, 2004 Nihonkai Chuetsu and 2011 Eastern Japan events) have 

generally not fulfilled these two conditions – a great earthquake in a large urban 

region.  Note however, that there were many ignitions in 1971, 1989, 1994 and 

1995, and that there were conflagrations of many acres in Kobe in 1995, and 

several hundred ignitions in the 2011 Tohoku earthquake. 

b) The general lack of awareness of the existence of an analytical framework within 

which to model the many factors involved in post-earthquake fire, and to quantify 

these factors and the outcome: many small fires, or conflagration? 

That large fires following earthquakes remain a problem is demonstrated by ignitions 

following the 1994 Northridge, 1995 Kobe and 2011 Eastern Japan earthquakes, as well as 

several recent large non-earthquake conflagrations, including the 1991 East Bay Hills and 1993 

Southern California wild fires.  While long a concern to fire departments and the insurance 

industry, consideration of the problem has been subject to debate regarding the likelihood and 

severity of post-earthquake fires in any future events.  
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Until recently, perhaps the only group at all concerned with post-earthquake fire has been 

the insurance industry, who due to 1906 is quite aware of the potential for catastrophic loss due 

to this phenomenon. (Steinbrugge, 1982) presents probably the best summary of knowledge 

deriving from this field. (Scawthorn et al., 1981)  developed a probabilistic post-earthquake fire 

ignition and spreading model, which has subsequently been applied at two levels: 

1. Jurdisdictional: a detailed modeling, with ignitions, fire loading, engine location and 

other parameters modeled gridwise at about the 10 hectare level of resolution, Due to the 

sizable data collection and computational effort involved, this model has only been 

applied to one US jurisdiction, the City of San Francisco (Scawthorn, 1986) and 

2. Regional: a coarser model based on approximations derived from the Jurisdictional 

model. Applied to the San Francisco and Los Angeles and other regions (Scawthorn, 

1987, Scawthorn, 1992, Scawthorn, 2001) this model permitted for the first time 

quantified estimates of the aggregate losses due to fire following earthquake. This work 

has largely served the needs of the insurance industry. 

The fact that fire following earthquake has been little researched or considered in North 

America is particularly surprising when one realizes that the conflagration in San Francisco after 

the 1906 earthquake was the single largest urban fire in history to that date.  It remains today the 

single largest earthquake loss in U.S. history, in terms of life and economic loss.  The loss over 

three days of more than 28,000 buildings within an area of 12 km2 was staggering:  $250 million 

in 1906 dollars, and over 3,000 killed1.  That fire has since only been exceeded in a peacetime 

urban fire by the conflagration following the 1923 Tokyo earthquake, in which over 140,000 

people were killed and 575,000 buildings destroyed (77% of the buildings destroyed were by 

fire) (Usami, 1981). 

Fires following large earthquakes are a potentially serious problem, due to the multiple 

simultaneous ignitions which fire departments are called to respond to while, at the same time, 

their response is impeded due to impaired communications, water supply and transportation. 

1 Exact number of fatalities is unknown – until the 1980’s, it was believed approximately 700 had been killed. 
Research by Gladys Hansen, San Francisco Librarian, indicated that far more people killed had not been accounted 
for.  In painstaking research over many years, she slowly gathered evidence from letters of the time, gathered from 
all over the world, of many more deaths.  Of particular interest was the fact that many minority fatalities, especially 
in San Francisco’s large Chinatown, were known in 1906, but not included in the official count. Her work is on-
going as of this writing, and the count is still increasing.  See Hansen and Condon, 1989. 
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Additionally, fire departments are called to respond to other emergencies caused by the 

earthquake, such as structural collapses, hazardous materials releases, and emergency medical 

aid. 

1.3 OUTLINE OF THE REPORT 

The next section of this report reviews selected historic fires following earthquake, and 

several recent studies.  Relevant building code and legislative requirements, and insurance 

aspects, are also briefly discussed.  Section 3 then presents the results of a survey of urban 

California fire and water agencies, and reviews exemplary measures undertaken by a few fire 

departments.  Section 4 then summarizes our findings and presents recommendations for 

mitigation of the fire following earthquake / water supply problem.  References, a glossary and 

other materials conclude the report. 
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2 Fire Following Earthquakes 

This section briefly reviews selected large earthquakes and the fires they caused, provides a 

summary overview of modeling of fire following earthquake, discusses the importance of water 

in regard to fire following earthquake, and concludes with a discussion of the insurance aspects 

of fire following earthquake. 

2.1 FIRES FOLLOWING SELECTED EARTHQUAKES 

Table 1 lists all US events with post-earthquake ignitions. This section briefly summarizes 

selected US and foreign earthquakes – since many aspects of these events are well-known, only 

summary information is provided with emphasis on the fires and water supply, with more 

detailed information on each event is provided in cited references and (TCLEE, 2005). 

2.1.1 The 1906 San Francisco, California, Earthquake and Fires 

The Mw 7.8 earthquake occurred at 5:12am on 18 April 1906 and was the most devastating 

earthquake in US history.  While the region of destructive shaking extended over a distance of 

600 kilometers, the vast majority of the damage in the entire earthquake, and especially in San 

Francisco, was due to fire.  Of the approximately 28,000 buildings lost in the event, 80% were 

attributed to fire.  (Scawthorn and O'Rourke, 1989) compiled data on the 52 known ignitions in 

the City of San Francisco, which are shown in Figure 1.   

The San Francisco Fire Department in 1905 protected approximately 400,000 persons occupying 

an urbanized area of approximately 21 square miles (about half of today’s city), and consisted of 

a total of 585 full paid fire force deployed in 57 companies.  The department was however totally 

overwhelmed  - the NBFU Conflagration Report (Reed, 1906) concluded 

‘the lack of regular means of communication and the absence of water in the burning 
district made anything like systematic action impossible: but it is quite likely that during 
the early hours of the fire the result would not have been otherwise, even had not of these 
abnormal conditions existed’ [sic]. 
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That is, the NBFU concluded that even under normal conditions the multiple simultaneous fires 

would have probably overwhelmed a much larger department, such as New York’s, which had 

three times the apparatus (NBFU, 1905). 

Several factors contributed to the initial ignitions rapidly growing out of control.  While 

the weather was relatively hot and dry, undoubtedly the primary factor leading to the 

conflagration was the failure of the water system (Scawthorn and O’Rourke, 1989).  In summary, 

in 1906 water to San Francisco was supplied from two series of reservoirs to a second series of 

smaller terminal reservoirs within the city limits, and then distributed by means of trunk and 

distribution pipelines. 

Figure 2 is a map of the 1904 water supply within the San Francisco City limits. There 

were nine reservoirs and storage tanks, for a total capacity of 354 million liters. Approximately 

92% of this total, or 325 million liters, were contained in the Lake Honda, College Hill, and 

University Mound Reservoirs. These reservoirs and the pipelines linking them with various parts 

of the city were the backbone of fire protection. All trunk lines, 400 mm or larger in diameter, 

are plotted in Figure 2.  Trunk lines are shown connected to the Lake Honda, College Hill, 

University Mound, Francisco Street, and Clay Street Reservoirs; all other reservoirs were 

connected to piping 300 mm or less in diameter.  Superimposed on the figure are the zones of 

lateral spreading caused by soil liquefaction, as delineated by (Youd and Hoose, 1978).  It can be 

seen that multiple ruptures of the pipeline trunk systems from the College Hill and University 

Mound Reservoirs occurred in the zones of large ground deformation, thereby cutting off supply 

of over 56% of the total stored water to the Mission and downtown districts of San Francisco. 

Two pipelines, 400 and 500 mm in diameter, were broken by liquefaction induced lateral 

spreading and settlement across Valencia Street north of the College Hill Reservoir. These 

broken pipes emptied the reservoir of 53 million liters, thereby depriving fire fighters of water 

for the burning Mission District of San Francisco.  

Reservoirs were within the zone of most intense fire, and therefore capable of providing 

water directly to fight the blaze. The combined capacity of these reservoirs was only 21 million 

liters, or 6% of the system capacity. The usefulness of such limited supply was further 

diminished by breaks in service connections, caused by widespread subsidence, burning and 

collapsing buildings.  Schussler identifies service line breaks as a major source of lost pressure 

and water. There were roughly 23,200 breaks in service lines, between 15 and 100 mm in 
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diameter. Fallen rubble and collapsed structures often prevented firemen from closing valves on 

distribution mains to diminish water and pressure losses in areas of broken mains and services. 

The Lake Honda Reservoir was able to provide a continuous supply of water to the western 

portion of the city. The fire eventually was stopped along a line roughly parallel to Van Ness 

Avenue, where water still was available from the Lake Honda Reservoir. Moreover, the southern 

and southeastern extent of the fire is bounded by areas south and southeast of the trunk system 

ruptures.  It is likely that these unburnt areas had water from the University Mound Reservoir. 

Key lessons to be drawn from this event are: 

The numerous ignitions approximately equal in number to the number of fire 

companies, which would have been extremely challenging under any circumstances. 

The availability of water in reservoirs, but numerous water main breaks due to large 

permanent ground deformations resulting in loss of water supply in the NE quadrant 

of the city, corresponding to the final burnt area; 

The better ground and availability of water supply in the SE and western parts of the 

city, where fires were halted; and 

The contributing factor of thousands of service line connection breaks, a factor 

largely overlooked but which may have further ‘bled’ the system. 

Recognition of the critical damage to the water system lead to the construction of San 

Francisco’s Auxiliary Water Supply System (AWSS), which is described later in this report 

2.1.2 The 1989 Loma Prieta, California, Earthquake and Fires 

The Mw 7.1 earthquake occurred on October 17, 1989 at 5:04pm local time with epicenter 

located about 30 km south of San Jose and 100 km south of San Francisco. Major damage 

included the collapse of the elevated Cypress Street section of Interstate 880 in Oakland, the 

collapse of a section of the San Francisco-Oakland Bay Bridge, multiple building collapses in 

San Francisco’s Marina district, and the collapse of several structures in Santa Cruz and other 

areas in the epicentral region. Damage and business interruption losses were estimated as high as 

$6 billion. Human losses were 62 people dead, 3,700 people reported injured, and over 12,000 

displaced. At least 18,000 homes were damaged, 960 were destroyed and over 2,500 other 
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buildings were damaged and 145 destroyed.  There were 916 documented water system pipe 

breaks in the event, Figure 3 (TCLEE, 2005).  

The earthquake resulted in only moderate shaking for most of San Francisco, typically of 

MMI VI, although shaking was perhaps as much as MMI VIII in the Marina district, Figure 4. 

Twenty-six fires occurred in San Francisco as a result of the earthquake, 11 on the 17th.  One of 

these fires occurred in the Marina District, and threatened to become a major conflagration.  At 

the same time in the Marina, 69 breaks in the domestic water supply and more than 50 service 

connections to water mains quickly dissipated all domestic water supply in the 40 blocks of the 

district. The AWSS main serving the Marina district remained intact. However, as a result of the 

shaking in locations other than the Marina, the AWSS sustained significant damage and major 

leakage from these breaks completely drained the Lower Zone of the AWSS in approximately 15 

minutes so that first arriving engines at the Marina fire found no water when they connected to 

AWSS hydrants, Figure 6.  

Firefighting efforts were thus severely hampered due to lack of MWSS and AWSS 

service to hydrants, due to the severe liquefaction and resulting pipe breakage in the Marina and 

elsewhere. Firefighters were forced to resort to drafting from nearby lagoons which however was 

inadequate, and the fire continued to grow.  Because the fire was located only two blocks from 

the Bay, the fireboat Phoenix was called for, arriving at about 6:30 P.M. At approximately the 

same time, PWSS hose tenders arrived at the scene and were able to connect to the Phoenix, 

laying approximately 6,000 ft. of 5-in. hose. The Phoenix pumped 6000 gpm at 180 psi for over 

18 hours (i.e., a total of 6.5 million gallons, equivalent to ten Olympic size swimming pools). 

Fire spread was stopped at about 7:45 P.M. by master streams from the monitors on the hose 

tenders, as well as ladder pipes and hand lines. 

The 1989 Loma Prieta earthquake provided a number of valuable observations and 

lessons, including: 

Although a relatively modest event, almost 1,000 pipe breaks were sustained 

throughout the region. 

The Marina fire was potentially very severe - it was a very large fire in a dense 

neighborhood of wood frame construction - an unusually calm wind was a very 

fortuitous circumstance 
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The fire was within 500 ft. of San Francisco Bay and the Pacific Ocean - the largest 

body of water on earth. However, this inexhaustible supply of water was inaccessible 

(could not be drafted from by arriving fire engines). 

The MWSS system had over 400 million gallons of storage within San Francisco, but 

the numerous breaks in the Marina prevented adequate pressure or volume at Marina 

hydrants - elsewhere in the City, MWSS performance was generally satisfactory. 

The AWSS is designed for earthquake ground motions, and did not sustain damage in 

the Marina despite widespread liquefaction - nevertheless, it lost pressure in the 

Lower Zone due to breaks several miles away. 

Deployment of San Francisco’s PWSS in conjunction with the fireboat Phoenix 

provided the only adequate source of firefighting water, which was the only way the 

Marina fire was extinguished. That is, the “backup to the backup” – the PWSS 

backing up the AWSS which backs up the MWSS – provided firefighting water for 

extinguishment at the Marina fire. The PWSS’ flexibility and portability proved 

adequate to the task. 

2.1.3 The 1994 Northridge, California, Earthquake and Fires 

The Northridge earthquake was the most significant earthquake to occur within a US city in 

more than 20 years. The 4:31 AM January 17, 1994 Mw 6.7 earthquake was centered under the 

Northridge section of the San Fernando Valley area of the Los Angeles region and resulted in 

Modified Mercalli Intensity (MMI) shaking intensities greater than MMI VIII over 

approximately 700 square miles of the northern Los Angeles area.  The population most heavily 

affected was in the San Fernando Valley, which is primarily protected by the Los Angeles City 

Fire Department.   

Table 2 lists fire departments significantly affected by the earthquake, and their summary 

statistics – see (Scawthorn et al., 1997) for additional detail.  Approximately 110 fires were 

reported as earthquake-related on January 17, as shown in Table 3 and Figure 7. The time line in 

Figure 8 shows all calls for assistance with fires on the day of the earthquake. Structure fires 

predominate (86%) the earthquake-related fires. 
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The Northridge earthquake effected the water supply for portions of the San Fernando 

Valley – for the LA Dept. of Water and Power system alone (consisting of, for diameters to and 

including 24 inch, 7,848 km of cast iron pipe; 433 km of ductile iron pipe; and 961 km of 

asbestos cement pipe) a total of 1,405 pipe repairs were reported, including 673 repairs for cast 

iron pipe; 24 repairs for ductile iron pipe; 26 repairs for asbestos cement pipe, and 216 repairs for 

steel pipe. The damage to the system resulted in dropping the water pressure to zero in some 

areas. On January 22nd, five days after the earthquake, between 40,000 and 60,000 customers 

were still without public water service, and another 40,000 were experiencing intermittent 

service. 

Scawthorn et al (1997) have documented a number of specific fires and fire department 

operations, as well as all ignitions, in this event.  One significant fire occurred on North Balboa 

Blvd. in the Granada Hills area of the San Fernando Valley, a residential area with one- and two-

story wood-frame single-family dwellings, many with swimming pools.  The fire was due to a 

broken 20-inch gas main under Balboa Boulevard which was ignited by electric arcing in a truck 

ignition system, creating a fireball and igniting two dwellings on the east side of Balboa and 

three on the west side, Figure 10.  Radiant heat from the gas fire was a major factor in the spread 

of fire.  Wind was 15 to 20 mph from the northeast.  Ignition occurred about 20 minutes after the 

earthquake struck.  A total of five homes were destroyed, with minor damage to four others.  The 

same ground displacements that had broken the gas main had also broken water mains, so that 

arriving firefighters found dry hydrants, but located swimming pools and used them as water 

sources.  A group of local citizen volunteers formed a “bucket brigade” using a swimming pool 

for a water source.  Engine companies pumped water between 1 1/2 and 2 hours during the 

firefighting operation.  It took about 2 hours for the natural gas leak fire to be reduced in size 

such that it presented a minimal threat from radiated heat.  Water usage for selected fires in this 

event is shown in Table 4. 

The 1994 Northridge earthquake provided a number of valuable observations and lessons, 

including: 

Over 1,000 water main breaks, and over 100 fires, occurred in this event. 

Permanent ground displacements broke gas mains, igniting fires, and also broke water 

mains at the same location, rendering surrounding fire hydrants inoperative.  
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Backyard swimming pools were used as water supply sources, providing 

approximately 70 minutes of water flow.  

The 1994 Northridge earthquake occurred on a winter morning at almost the same 

location as the 1971 San Fernando earthquake. Both events had about 110 fires. 

2.1.4 The 1995 Hanshin (Kobe), Japan Earthquake and Fires 

The 5:46 AM January 17, 1995 Mw 6.9 (JMA M7.2) Hanshin (official name: Hyogo-ken 

Nambu) earthquake was centered under the northern tip of Awaji island near Kobe, in the Kansai 

region of Japan.  The event resulted in Modified Mercalli Intensity (MMI) shaking intensities 

greater than MMI VIII did over approximately 400 square km of the Kobe-Ashiya-Nishinomiya 

area. Population of the affected area (MMI VIII or greater) is approximately 2 million. 

The Kobe Fire Department (KFD) is a modern, well-trained fire response agency, 

organized into Prevention, Suppression, and General Affairs sections, and a Fire Academy. The 

city is served by 1,298 uniformed personnel. Equipment includes two helicopters, two fireboats, 

and 196 vehicles. 

Approximately 100 fires broke out within minutes, primarily in densely built-up, low-rise 

areas of the central city, which comprise mixed residential-commercial occupancies, 

predominantly of wood construction, see Figure 11.  Within 1 to 2 hours, several large 

conflagrations had developed. There were a total of 108 fires reported in Kobe on January 17, 

with fire response hampered by extreme traffic congestion, and collapsed houses, buildings, and 

rubble in the streets. Because of the numerous collapses, many areas were inaccessible to 

vehicles, and conflagrations developed in several areas, Figure 12.  

Firewater in the area is primarily from the city water system, served by gravity from 30 

reservoirs. Of these, 22 have dual tanks, with one tank having a seismic shutoff valve so that, in 

the event of an earthquake, one tank’s contents is conserved for fire fighting. In this event, all 22 

valves functioned properly, conserving 30,000 cubic meters of water, which, however, could not 

be delivered because of approximately 2,000 breaks in the underground piping. The city has 

provided underground storage of water for disaster fire fighting in 968 cisterns, generally of 40 

cubic meter capacity, sufficient for about a 10-minute supply of a pumper. All engines carry hard 

suction, so that additional water can be drafted from Osaka Bay or the several streams running 

through Kobe. 
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Water for fire-fighting purposes was available for 2 to 3 hours, including the use of 

underground cisterns. Subsequently, water was available only from tanker trucks. KFD 

attempted to supply water with a fireboat and relay system, but this was unsuccessful due to the 

relatively small hose used by KFD. The author overflew the area at about 5:00 p.m. on January 

17 and was able to observe all of the larger fires (about eight in all) from an altitude of less than 

300 meters. No fire streams were observed, and all fires were burning freely—several with 

flames 6 meters or more in height. No fire apparatus were observed in the vicinity of the large 

fires, although fire apparatus could be seen at other locations (their activities were unclear from 

the air). Some residents formed bucket brigades (with sewer water) to try to control the flames. 

Selected aspects of the 1994 Northridge and 1995 Hanshin earthquakes are compared in Table 5. 

The 1995 Kobe earthquake provided a number of valuable observations and lessons, including: 

A large number of ignitions were strongly correlated with damage to the water 

distribution system. 

Water was locally available (Osaka Bay, streams within the town, hillside water 

tanks) but could not be effectively conveyed to the fire ground. 

Water cisterns were widely available and were used, but were too small to be 

effective. 

The Northridge and Kobe events are more similar, in terms of ignition rates, water 

system damage and fire service resources, than they are dissimilar. 

2.1.5 The 2011 Eastern Japan Earthquake and Fire 

The 2011 Eastern Japan Mw 9.0 earthquake occurred offshore eastern Japan on 11 March 2011 

at 2:46pm, and was accompanied by a major tsunami that in fact caused much more damage than 

the shaking. The earthquake is the largest magnitude event in Japan’s entire history, and resulted 

in approximately 26,000 killed and missing, massive damage along hundreds of kilometers of 

coastline, and catastrophic damage to several nuclear power stations. 

The earthquake also resulted in approximately 345 fires, Figure 13, which is perhaps 

more than is documented in all previous events combined. The fires were about 50% within the 

tsunami affected area, and 50% outside this area.  In the Tokyo area, there were substantially 

14 



 

 

 

 

 

 

 

 

  

more fires in less strongly shaken areas than in more strongly shaken areas, Figure 14, which is 

clearly due to the combination of shaking and building density, Figure 15 and Figure 16.  

There were a substantial number of oil refineries in the affected area, two of which had 

major fires.  Figure 17 shows the Cosmo oil refinery on Tokyo Bay in Chiba, where a gas sphere 

ignited due to shaking and burned for several days. Figure 19 shows the Japan Oil refinery in 

Sendai, which was inundated by the tsunami and also burned for several days.  

Aside from these two, there were hundreds of other fires - Figure 20 shows one of a 

number of conflagrations that occurred in tsunami affected areas, due to ruptured fuel tanks 

releasing flammable liquids on the surface of the water, which are then easily ignited. Figure 21 

and Figure 22 show a large foodstuffs warehouse in the Port of Sendai, where process-related 

open flames probably ignited ruptured edible oil tank contents.  

Fire departments in almost all these cases were unable to respond to the fires, due 

primarily to being simply overwhelmed, Figure 23. However, review of post-event damage 

records shows that most domestic water supply lines were damaged in the affected area, so that 

water supplies would have been inadequate if fire suppression would have been attempted. 

The 2011 Eastern Japan earthquake provided a number of valuable observations and 

lessons, including: 

Literally hundreds of ignitions occurred in this event, demonstrating the issue of 

multiple simultaneous ignitions remains with us today. 

Extensive damage to water supply lines, removing normal firefighting water supply 

Major fires at large industrial complexes, even at a distance from the event. 

2.1.6 Summary of Lessons from Historical Events 

The accumulation of experience based on observations of the above events, and others which 

space does not permit discussing here, leads to the conclusion that the potential exists for large 

conflagrations following a major earthquake in an urban area, particularly in a region with a 

large wood building stock.  Under adverse meteorological and other conditions, these 

conflagrations may burn for several days.  Water supply was extensively compromised in 

virtually all these events, but with each situation being unique: 
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1906 San Francisco saw the wholesale loss of water supply, and the largest peacetime 

urban fire in history to that date (only exceeded since by the 1923 Tokyo earthquake 

and fire) 

In context, 1989 San Francisco was a quite minor earthquake, but water supply was 

again lost at the site of the largest fire, and only the ‘backup to the backup’ saved the 

day.  San Francisco is unique in this regard, in having multiply layered firefighting 

water supplies. 

In context, 1994 Northridge was also a relatively minor earthquake on the edge of a 

large urban region with perhaps the largest and best coordinated fire service in the 

world.  In this instance, despite over 100 ignitions, firefighters improvised to find 

water for fighting relatively modest fires. 

1995 Kobe was a major earthquake in the heart of a large urban area – virtually all 

normal water supply was lost and the more than 100 fires quickly grew out of control. 

Kobe had a large number of cisterns, but of relatively small size (10 minute supply) 

which were inadequate to the task, as were attempts to draft water from Osaka Bay. 

The 2011 Eastern Japan earthquake was one of the world’s largest, but occurred 

offshore a relatively sparsely populated part of Japan – if there had been no tsunami, 

the event would have been relatively inconsequential.  Nevertheless, several major 

industrial fires, and over 300 other fires, occurred, which generally could not be 

combated due to the general overwhelming of the fire service as well as loss of water 

supply.  Over 30 fires occurred in Tokyo, distant from the event, which were quickly 

dealt with by the Tokyo Fire Department (the world’s largest).  

The essential lesson for California that can be drawn is that extensive well-drilled mutual 

aid systems are required, in order to mobilize large resources in response, but the deployment of 

these resources will be hampered by transportation difficulties and, perhaps most tellingly, 

failure of firefighting water supplies.  Improvements in planning and infrastructure are absolutely 

essential to forestall this potential. 

16 



 

 

  

 
 

 

 

    

 

  

 

 

 

 

 

 

 

2.2 MODELING OF FIRE FOLLOWING EARTHQUAKE 

The first step towards solving any problem is analyzing the problem and quantifying its effects. 

A full probabilistic methodology for analysis of fire following earthquake was developed in the 

late 1970s (Scawthorn et al., 1981) and has been applied to major cities in western North 

America (Scawthorn and Khater, 1992). A recent (TCLEE, 2005) details the current state of the 

art in modeling fire following earthquake, so that only a brief review is presented here. In 

summary, the steps in the process are shown in Figure 25: 

Occurrence of the earthquake –causing damage to buildings and contents, even if the 

damage is as simple as knockings things (such as candles or lamps) over. 

Ignition – whether a structure has been damaged or not, ignitions will occur due to 

earthquakes. The sources of ignitions are numerous, ranging from overturned heat 

sources, to abraded and shorted electrical wiring, to spilled chemicals having 

exothermic reactions, to friction of things rubbing together. 

Discovery – at some point, the fire resulting from the ignition will be discovered, if it 

has not self-extinguished (this aspect is discussed further, below). In the confusion 

following an earthquake, the discovery may take longer than it might otherwise. 

Report – if it is not possible for the person or persons discovering the fire the 

immediately extinguish it, fire department response will be required. For the fire 

department to respond, a Report to the fire department has to be made. 

Communications system dysfunction and saturation will delay many reports. 

Response – the fire department then has to respond, but are impeded by non-fire 

damage emergencies they may have to respond to (e.g., building collapse) as well as 

transportation disruptions. 

Suppression – the fire department then has to suppress the fire. If the fire department 

is successful, they move on to the next incident. If the fire department is not 

successful, they continue to attempt to control the fire, but it spreads, and becomes a 

conflagration.  Success or failure hinges on numerous factors including water supply 

functionality, building construction and density, wind and humidity conditions, etc. If 
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unable to contain the fire, the process ends when the fuel is exhausted or when the 

fire comes to a firebreak. 

This process is also shown in the Fire Department Operations Time Line, Figure 26. 

Time is of the essence for the fire following earthquake problem. In this figure, the horizontal 

axis is Time, beginning at the time of the earthquake, while the vertical axis presents a series of 

horizontal bars of varying width. Each of these bars depicts the development of one fire; from 

ignition through growth or increasing size (size is indicated by the width or number of bars). 

Fire engines are shown responding to growing fires, spending some time there, and then 

proceeding to the next fire.  Eventually, many of the engines converge on a fire that has grown 

very large (due to engines being at other fires), and the crux of the matter is whether enough 

engines arrive in time to contain the fire, or not. Two aspects of this process warrant emphasis: 

Fire Growth and Spread 

It is not generally appreciated how quickly structural fires grow and spread. An extreme example 

of fire spread is the 1991 East Bay Hills fire, where over 3,000 buildings were destroyed within 

the space of a few hours (Routley, n.d.,).  Under normal conditions, the time to full fire 

involvement of a room (“compartment” in fire service terminology) varies greatly and most 

directly with the amount of heat input – overheated wiring or a smoldering cigarette on a 

mattress may take hours to finally burst into open flame – but once such a flame is combined 

with normal fuels (furniture, newspapers, carpeting…), the time to “flashover” and a roaring fire 

can be as short as a minute or two, and very often is less than ten minutes.  The spread from 

room to room in a typical home is very quick, so that an entire house can be in flames within 

only a few minutes.  Under normal California urban building densities, neighboring structures 

(“exposures”) will be ignited within only a couple of minutes, and the process repeats itself. 

Fire Response and Suppression 

Under normal conditions, urban fire department response to a structural fire is usually a 

minimum of two fire engines and one ladder truck (additional apparatus responds in high value 

or extra hazard areas). These normal responses will not be possible following a large earthquake, 

since fires may outnumber fire engines. Based on review of actual operations following 

earthquakes, and discussions with senior fire department officials, it is likely that following an 
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earthquake, initially only one engine will respond to reported fires, to suppress the fire and/or 

size-up the situation. 

With regard to water required for suppression, fire flow under normal conditions can be 

computed on the basis of 4 gallons per minute (gpm) for each 100 cubic feet (cf) of occupancy 

directly involved in the fire or immediately exposed (Kimball, 1966), so that one engine can 

typically attack about 3,000 to 4,000 square feet of floor area if the monitor can be efficiently 

used, or half of this (i.e., one house) if additional personnel are not available. If minimal tactics 

are employed (i.e., no interior attack, perimeter protection only), which is likely following an 

earthquake, then the capacity of one engine can be considered to be increased (e.g., up to three or 

four hundred linear feet of perimeter).  

Therefore, it can be seen that fire engines have to learn of the fire, and respond, quickly, 

in order that they are able to stay ahead of the fire, especially given possibly limited water 

supply. 

A question arises whether fire department resources will initially be totally and primarily 

devoted to fire suppression, since it should be recognized that other demands (search and rescue, 

hazardous material response, emergency medical treatment) will also be placed on these 

resources?  This question has been reviewed with senior officials of several fire departments, and 

their opinion is that some fire department resources will have to be diverted from firefighting to 

these other services. However, experience has shown that serious fires typically receive first 

priority, for the following reasons: 

a) fire service training and tradition, 

b) fires are dynamic while building collapses are relatively static-that is, a fire 

situation will worsen if neglected, while the building collapse and rescue situation 

can often wait several hours (indeed often must await the arrival of heavy 

equipment), 

c) Ability of other services (police and others) to assist in building collapses, 

emergency medical treatment and hazardous materials management (via isolation 

and evacuation), while only the fire service is equipped to handle serious fires. 
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In addition to each jurisdiction’s fire suppression resources (i.e., the department’s first line and 

reserve engines, other equipment and personnel), auto and mutual aid need to be considered. 

These resources of course arrive somewhat later, from more distant locations.  

2.3 RECENT ESTIMATES OF FIRE FOLLOWING EARTHQUAKE LOSSES 

The above process has been widely adopted over the last several decades and is now the standard 

methodology employed by insurance companies as well as in HAZUS, the national loss 

estimation methodology and software developed by FEMA (DHS, 2003).  Two recent 

applications of the methodology are of interest: 

2.3.1 Southern California ShakeOut Exercise 

In 2008, an earthquake-planning scenario document was released by the U.S. Geological 
Survey (USGS) and California Geological Survey that hypothesized the occurrence and 
effects of a Mw7.8 earthquake on the southern San Andreas Fault. It was created by more 
than 300 scientists and engineers…A custom HAZUS analysis and 18 special studies were 
performed to characterize the effects of the earthquake on the built environment. The 
scenario posited 1,800 deaths and 53,000 injuries requiring emergency room care. 
Approximately 1,600 fires are ignited, resulting in the destruction of 200 million square feet 
of the building stock, the equivalent of 133,000 single-family homes. Fire contributes $87 
billion in property and business interruption loss, out of the total $191 billion in economic 
loss, with most of the rest coming from shake related building and content damage ($46 
billion) and business interruption loss from water outages ($24 billion). Emergency 
response activities are depicted in detail, in an innovative grid showing activities versus 
time, a new format introduced in this study.(Porter et al., 2011) 

Analyses were performed for the ShakeOut Scenario, which are excerpted here: 

The major water transmission lines within the city of Los Angeles are plotted in Figure 
27.  The FLAA, SLAA, and MWD’s transmission of SWP water enter the city from the 
north at the Van Norman Complex and MWD supplies CRA water at Eagle Rock 
Reservoir. The LADWP distributes water to over 4 million people within the city of Los 
Angeles, covering a 1,204 km2 area. This is accomplished using approximately 11,691 km 
of trunk and distribution pipelines ranging from 5 to 366 cm in diameter, 108 potable 
storage tanks and reservoirs having a total maximum capacity of 18.8 million m3, 260 
regulator stations, 80 pumping stations, three filtration plants, 25 chlorination stations, 
and over 712,000 service connections in 115 pressure zones. In addition, the LADWP 
maintains four raw water emergency storage reservoirs, having a maximum capacity of 
30 million m3, within the city. 

Table 6 summarizes the simulation results including nearly 2,700 pipeline repair 
locations, 150 on trunk lines. Figure 3 presents simulation results at 0 and 24 hours after 
the earthquake showing locations on the trunk line system where pipes are unpressurized 
and there is insufficient water flow to satisfy demand, prior to utilizing the raw water 
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storage reservoirs. Results from GIRAFFE are presented in terms of system serviceability 
defined as the ratio of water flow after to water flow before the earthquake. System 
serviceability is approximately 76% immediately after the earthquake (at 0 hours) and 
drops to 34% after 24 hours. Severe deterioration in the ability to deliver water results 
over a 24-hour period due to damaged and leaking pipelines. A 34% system 
serviceability means that 66% of the normal water demand, throughout the entire system, 
is not met one day after the earthquake. Some areas within the system have higher or 
lower serviceability. The simulation results account for service line leakage and damage 
to interior piping of buildings, which draw more water from the system, but not for 
firefighting demand. Leaking pipelines draw down tanks and reservoirs causing some 
portions of the system to lose pressure, and in some areas all local sources of stored 
water. Following such a large event, approximately 24 hours is needed to mobilize the 
initial response to isolate and repair leaking pipelines. Thus, Figure 27(b) represents a 
likely flow state within one day following the earthquake, in the absence of fire demands. 
(Davis and O'Rourke, 2011) 

Taking into account the loss of water, as well as shaking conditions, building density and other 

factors: 

Employing population data for the region and intensity data from the scenario, the total 
number of fire ignitions likely to occur in the scenario was calculated to be 
approximately 1,600, as shown in Figure 28 and Table 7. 

There are approximately 2,000 fire engines in the region, and many will be close by and 
able to rapidly respond to ignitions.  The performance of lifelines, such as water supply, 
gas integrity, electric power, communications and transportation, is integral to the fire 
following earthquake process.  Water pressure will drop in some portions of the more 
heavily shaken area due to pipe breaks and tank failures, despite widespread efforts over 
the last several decades to upgrade water supply systems in California.  Fire departments 
in many areas will have to resort to alternative water supplies (creeks, ponds, swimming 
pools, etc).  They will be handicapped in this since most engine companies today do not 
carry hard suction hose, although LAFD in the Northridge earthquake was able to make 
good use of swimming pools using 1.5” siphon ejectors.  This initial lack of water supply 
will add to the number of large fires. 

A particular concern is the large number of oil refineries, tank farms and related 
facilities in and around Long Beach.  These facilities are responsible for half of 
California’s gasoline, and one-third of the refined gasoline west of the Rockies.  When 
strongly shaken, oil refineries and tank farms have typically had large fires which have 
burned for days.  While the Long Beach area is shown to have lower intensity shaking, 
the long period effects at the site from the M7.8 scenario event has the potential to cause 
large sloshing in tanks, and fires. To put this in perspective, the 2003 Tokachi event 
caused one tank fire at a 140,000 bbl/day facility 230 km from the event epicenter, while 
the ShakeOut scenario is 80 km distant from 1.1 million bbl/day aggregate refining 
capacity. 

Under the assumed scenario conditions, analysis shows that the approximately 1,200 
large fires will result in an ultimate burnt area equivalent to approximately 200 million 
sq. ft. of residential and commercial building floor area, or 133,000 single family 
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dwellings (SFED2).  To put this in perspective, Los Angeles county (particularly central 
Los Angeles) will sustain about 600 fires and a total burnt area of about 140 million sq 
ft. of building floor area.  On average this is about 240,000 sq. ft. of building floor area 
burnt per fire, or about 2.5 city blocks per fire – that is, loss of entire city block, and loss 
of about three quarters of the blocks on either side (i.e., fire jumps one street each way, 
then burns out).  Given the densities of wood buildings in Los Angeles as shown in Figure 
29, this is not unreasonable.  The ultimate burnt area of approximately 200 million sq. ft. 
of building floor area equates to approximately $40 billion of building value 3 .  
(Scawthorn, 2011b). 

2.3.2 San Francisco CAPSS Study 

This report analyzed fire following earthquake for San Francisco as part of a larger project 

undertaken by the San Francisco Department of Building Inspection entitled Community Action 

Plan for Seismic Safety (CAPSS).  A stochastic model for analyzing fire following earthquake 

for San Francisco was employed to assess fire following earthquake impacts due to four 

earthquake scenarios:  magnitude 7.8, 7.2 and 6.5 events on the San Andreas fault near San 

Francisco, and a magnitude 6.9 event on the Hayward fault.  These events cause high ground 

motions in San Francisco that result in ground failure in many parts of the City – ground motions 

are particularly high in the western part of San Francisco, which was not yet built up in 1906 and 

therefore is not protected by the special high pressure SFFD Auxiliary Water Supply System 

(AWSS).  Depending on the specific earthquake scenario, these ground motions and ground 

failures are estimated to cause over 1,000 breaks in the potable water system, Figure 30, so that 

SFFD’s AWSS and cisterns will be the only source of firefighting water in many parts of the 

City.  The AWSS itself will sustain some damage, forcing SFFD to fall back to cisterns only in 

some places.  At the same time, SFFD’s 42 fire engines will almost certainly not be able to 

respond to all the post-earthquake fires, which are estimated to be about 100 on average (with a 

10% chance of as many as 140) for the magnitude 7.8 San Andreas event.  As a result, the 

methodology employed here estimates ignitions, building burnt areas and dollar losses for the 

2 An average California single family dwelling is about 1,500 sq. ft. in floor area.  This unit (1,500 sq. ft. floor area) 
is termed a Single Family Equivalent Dwelling (SFED) and is used to normalize and communicate overall building 
losses in a manner readily comprehensible to lay persons. A loss of 1.5 million sq. ft. of residential and commercial 
buildings for example is equivalent to 1,000 single family dwellings, or SFED.  Most people can more readily 
comprehend the loss of 1,000 houses, than 1.5 million sq. ft. of floor area. 
3 Based on replacement cost of $200 per square foot – note this is a conservatively low estimate of replacement cost 
at current (2008) prices. 
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four scenario events.  These results are presented in Table 8 as ranges within which losses will 

fall half (i.e., 50%) of the time (correspondingly, half the time the losses will be outside – that is, 

either more or less) than the indicated ranges: . 

For example, for the Mw 7.8 event, essentially a repeat of the 1906 earthquake, losses 

will on average be about $7.6 billion, and half the time will be more than $4.1 billion and less 

than $10.3 billion, Figure 31  More detailed results are presented in the report, but the 

significance of these results is not in their precision, but rather in their overall magnitude.  The 

model producing these results was validated by application to the 1989 Loma Prieta event, and 

examined for methodological and parametric sensitivity, with satisfactory results. 

2.3.3 Discussion 

The above two studies illustrate several key points: 

Fires - many hundreds of ignitions are expected in these scenarios (about 100 in the 

San Francisco CAPSS study, but when extrapolated to the entire San Francisco Bay 

Area, the Scenario events will cause several thousand ignitions – note that San 

Francisco represents only about 12% of the Bay Area’s population). 

Water - the usual firefighting water supplies will almost certainly fail - about 1,000 

pipeline breaks are estimated for the San Francisco study, while Davis and O’Rourke 

estimate almost 3,000 breaks for the ShakeOut Scenario (which is only for the portion 

of the Los Angeles basin served by LADWP).  

Loss - the estimated financial losses are very significant – about $40 billion of 

building value in the ShakeOut Scenario study, and $5~10 billion for the San 

Francisco study (depending on scenario) where, again, the San Francisco study only 

covered about 12% of the San Francisco Bay Area. (These are the only two such 

studies for urban areas in California, to the best of this author’s knowledge.  The 

wider San Francisco Bay Area and San Diego have not been similarly studied). 
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2.4 IMPORTANCE OF WATER IN FIRE FOLLOWING EARTHQUAKES 

2.4.1 Experience 

The importance of reliable water for fighting fires following earthquakes has long been 

recognized in California – indeed, one of the ironies of the 1906 San Francisco earthquake (other 

than that the city burned down despite being surrounded on three sides by the largest body of 

water on earth) was that in 1905 the fire department had proposed construction of a large ‘high 

pressure supply system.  

Lessons sometimes have to be relearned however.  As noted by Routley in the 1991 East 

Bay Hills fire: 

Water supply was a major problem during most of the incident. Part of the problem 
related to the fact that many of the units that responded from distant areas were unable to 
hook up to Oakland hydrants. When California adopted a standard 2 l/2inch threaded 
connection for all hydrants, the cities of Oakland and San Francisco opted to maintain 
their 3-inch connections and to keep a supply of adapters on hand for mutual aid units. 
Fire departments in the area normally carry adapters on their apparatus, but the plan 
called for adapters to be obtained from the warehouse to meet incoming mutual aid strike 
teams at staging areas. Since this fire occurred on a Sunday, there was a delay in 
obtaining the adapters until off-duty personnel could open the warehouse and send them 
to the scene on supply trucks. 

Many of the incoming units were committed and discovered the adapter problem only 
when they needed water to supply hose lines or refill their tanks. This limited the ability 
of several units to work effectively until they could locate a unit with an adapter, or one 
of the supply trucks located them. Since some of these companies were in critical combat 
areas, it was difficult for the logistics system to find them and deliver the adapters. 

The water supply on the hills was known to be a problem from previous incidents and 
from risk analysis projects, including earthquake vulnerability studies. The water system 
on the hills was arranged as layered pressure zones, each supplied by a tank at a higher 
level. The storage tanks served areas where the difference in elevation would maintain 
static pressure in a desirable range at the delivery levels. The tanks were kept filled by a 
series of electrically powered pumps, which relayed the water from tank to tank, and the 
pumps were not provided with emergency generators. If a pump at a particular level 
failed, it isolated the tanks at higher levels from any capability for replenishment. The 
power began to fail early in the fire, as wooden poles burned, lines dropped, and 
transformers exploded. As pumps failed, the higher level tanks would begin to run out of 
water. When the high voltage lines shorted out, at 1315 hours, all of the power to the 
remaining pumps failed, and the whole system on the hills began to run dry. 

The demand on the system was also very high, as companies tried to establish large 
handlines and master streams to establish defensive lines. In addition, many of the 
homeowners were using their garden hoses to wet down their roofs and shrubbery to 
guard against flying brands and embers; some even left garden sprinklers running on 
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their rooftops as they evacuated. As homes burned to the ground, their water connections 
were left spurting water into the rubble. All of these factors created an unprecedented 
demand on the system, quickly using all of the stored water. Companies on the hills 
reported hydrants going dry as early as Sunday noon, and the supply was not restored 
until that night, when portable generators were brought in to power some of the critical 
pumps. It does not appear that the water supply was a deciding factor in the outcome of 
the fire on the hills, since the crews were unable to make any progress against the flames 
before the hydrants went dry. The strength of the wind and the thermal forces made water 
almost totally ineffective to stop the downwind progress of the fire. The available water 
was useful in protecting certain positions, including some locations where firefighters 
took refuge, and in covering exposures on the flanks. In the Rockridge district there were 
also sections where the water supply was known from past experiences to be weak. Many 
of the mains in the area were old and inadequate, and at least 50 homes were burning by 
1300 hours. San Francisco Strike Team One was assigned to this area and around 1420 
hours the Strike Team Leader was able to call back to his department and have two of the 
city’s large diameter hose tenders activated and dispatched to Oakland. The hose tenders 
were able to bring in large supply lines from streets on the edge of the district to 
supplement the supply. 

One of the strong water supply areas was the private system installed at the Claremont 
Hotel. This system provided an adequate supply for the defensive streams that were 
established on the exposed side of the hotel. While these streams were maintained in a 
stand-by defensive posture, the crews were able to extend handlines up the hill to engage 
the fire on Alvarado Road and some of the smaller streets overlooking the hotel. This kept 
the fire from advancing further down the hill and causing a direct exposure to the hotel. 
(Routley, n.d.,) 

2.4.2 Buildings Code Requirements for High-Rise Buildings 

The importance of water supply for firefighting in high-rise buildings4 has long been codified, 

due to the understanding that the normal water supply for automatic sprinklers from street mains 

may be lost in an earthquake.  The 2006 International Building Code requires a secondary water 

supply for high-rise buildings, which typically equates to about a 15,000 gallon tank within the 

building: 

903.3.5.2 Secondary water supply. A secondary on-site water supply equal to the 
hydraulically calculated sprinkler demand, including the hose stream requirement, shall 
be provided for high-rise buildings in Seismic Design Category C, D, E or F as 
determined by this code. The secondary water supply shall have a duration of not less 
than 30 minutes as determined by the occupancy hazard classification in accordance 
withNFPA13. Exception: Existing buildings.  (IBC, 2006) 

4 Defined in the IBC as a building having an occupied floor more than 75 ft. above the lowest level of fire 
department vehicle access. 
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2.4.3 California Legislative Requirements 

Article 9.5 of the California Emergency Services Act (CESA, 2009 as amended) requires: 

§ 8607.2. Plans 

(a) All public water systems, as defined in subdivision (f) of Section 116275 of the Health 
and Safety Code, with 10,000 or more service connections shall review and revise their 
disaster preparedness plans in conjunction with related agencies, including, but not 
limited to, local fire departments and the office to ensure that the plans are sufficient to 
address possible disaster scenarios. These plans should examine and review pumping 
station and distribution facility operations during an emergency, water pressure at both 
pumping stations and hydrants, and whether there is sufficient water reserve levels and 
alternative emergency power, including, but not limited to, on site backup generators 
and portable generators. 

(b) All public water systems, as defined in subdivision (f) of Section 116275 of the Health 
and Safety Code, with 10,000 or more service connections following a declared state of 
emergency shall furnish an assessment of their emergency response and 
recommendations to the Legislature within six months after each disaster, as well as 
implementing the recommendations in a timely manner. 

(c) By December 1, 1996, the Office of Emergency Services shall establish appropriate 
and insofar as practical, emergency response and recovery plans, including mutual aid 
plans, in coordination with public water systems, as defined in subdivision (f) of Section 
116275 of the Health and Safety Code, with 10,000 or more service connections. 
[emphasis added] 

CESA 2009 clearly requires all larger public water systems to develop disaster preparedness 

plans in conjunction local fire departments…to assure sufficient water reserve levels and 

backup facilities.  However, as we shall see in the next section, coordination between fire and 

water departments in many cases is less than satisfactory. 

2.5 INSURANCE ASPECTS 

2.5.1 Insurance Industry Exposure to Fire following Earthquakes  

Property insurance contracts in the US typically exclude earthquake loss (i.e., earthquake may be 

covered under a separate rider or policy), but cover fire without exclusion if earthquake initiated. 

That is, earthquake shaking losses are only covered for the fraction of California property whose 

owners opt to do so, but fire following earthquake losses are covered for virtually all California 

property that has a fire policy (i.e., almost all).  
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In 2009 the specific amounts were that about 9.5 million residential and 1 million 

commercial property insurance policies were in force in California, with a total value of the 

property insured of $ 4.7 trillion ($2.5 trillion residential and $2.15 trillion commercial).  The 

total insurance premium paid per year for these policies was about $10 billion.  Of the total 

exposure, about 12% of residential policies (total value $ 416 billion) and about 9.7% of 

commercial policies (total value $141 billion) provided earthquake cover5. 

While the insurance industry has only about a 10% exposure to earthquake shaking 

losses, of total sums insured, its exposure to fire following earthquake losses is virtually 100% 

and, for any one event, in the many billions of dollars (as estimated and discussed above). 

2.5.2 Insurance Industry Assessment of Public Water Supplies 

The background for and current methods employed by the U.S. insurance industry to assess the 

adequacy of municipal water supplies for fire protection are reviewed in some detail in Appendix 

C of this report, and are summarized here.  The review concludes that, while the industry has 

developed excellent tools for the development and management of economical fire protection 

and water systems under ordinary conditions, the guidance provided by the insurance industry 

for adequacy of public water supplies does not mention or consider earthquake.  In no way 

considered are the earthquake associated numerous simultaneous ignitions that will each require 

fire department response, the overwhelming of fire alarm and telephone reporting, or damage to 

water mains and fire hydrants.  Current standards employed by the insurance industry are 

predicated on timely arrival of firefighters at each fire, who will readily be able to access the 

needed fire flow.  As has been observed in numerous earthquakes, some fires will not be 

responded to in a timely manner, and water will not be readily available.  These two factors – 

delayed response and inadequate water supply – were long ago identified as key factors leading 

to urban conflagration.  

In order to assess current insurance industry standards vis-à-vis water supply required 

following a major earthquake, a city block in a more built-up neighborhood of San Francisco, 

CA, Figure 53, is examined in Appendix C.  Using the procedures referenced there, the Needed 

Fire Flow for a typical building in the subject city block is determined to be 2,500 gpm, which is 

5 California Department of Insurance, Summary of 2009 Residential & Commercial Market Totals, Earthquake 
Premium and Policy Count Data Call. 
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a reasonable estimate of the fire flow that would be required to contain and suppress a fire in one 

of these nearly 100 year old wood framed buildings, given timely fire engine response. 

However, considering post-earthquake conditions, with a response delayed for an hour or 

so, it is quite likely given the type of construction in the subject neighborhood that much of one 

or more city blocks would be full involved in fire.  In such a case, the only option for the fire 

department would be to try to prevent fire spreading beyond the block or two fully involved. 

The tactic to do this would be to deploy fire engine master streams in a ‘water curtain’, as shown 

in Figure 55.  Calculations show that the total post-earthquake conflagration required fire flow 

would be in the range of 7,200 to 12,000 gpm – that is, the post-earthquake conflagration 

required fire flow is far in excess of that required by current insurance standards.   

While the San Francisco example selected, of a densely built neighborhood of older wood 

frame buildings (often termed a ‘conflagration breeder’ in the fire service) is a pessimistic case, 

it clearly makes the point that large earthquakes will lead to large fires in large cities in 

California, which require much more water than required under non-earthquake conditions. 

It is worth noting that the value of buildings and contents in the one city block examined 

in this exercise is on the order of $100 million, all of which is fully insured for fire, including fire 

following earthquake. 

2.6 SUMMARY 

The above discussion has highlighted the following points:  

California is highly seismic, and its earthquakes are always accompanied by 

numerous fires. 

While water system design and technical standards are much more advanced than in 

1906, water distribution systems continue to have numerous breaks in large 

earthquakes. 

Building codes, building materials and internal fire protection systems are done much 

to eliminate the urban conflagration problem under normal circumstances.  However, 

these rely on timely response by fire departments, which is unlikely following a major 

earthquake.  
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As a result, the fire following earthquake problem remains with us today.  The size of the 

problem is difficult to accurately assess, but best estimates suggest a major earthquake in urban 

California will result in tens of billions of dollars in fire loss.  In the next section we examine 

how well fire and water agencies in California are addressing this problem.  
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3 California’s Urban Water Systems vis-à-vis 
Fire Following Earthquakes 

3.1 INTRODUCTION 

This section first reviews the current status of California’s urban fire and water agencies vis-à-vis 

fire following earthquake.  Our understanding of this status is based on a survey of several dozen 

fire and water agencies, as well as interviews with selected officials.  We then review some 

special efforts being undertaken by selected agencies, to prepare for the special circumstances of 

fire following earthquake. 

3.2 CURRENT STATUS OF CALIFORNIA’S URBAN FIRE AGENCIES 
EMERGENCY WATER SUPPLY AND FIRE FOLLOWING EARTHQUAKES 

In order to understand the current status of urban fire and water agencies vis-à-vis fire following 

earthquake, a survey was conducted of several dozen fire and water agencies, as well as 

interviews with selected officials.  The survey forms are presented in appendices, and responses 

are summarized here. 

3.2.1 Survey of Fire Departments 

3.2.2.1 Overview of the Survey 
A survey form consisting of 27 questions was prepared and distributed electronically. The 

assistance of CalEMA was enlisted in eliciting responses, and a total of 26 responses 

representing 19 different larger urban California fire agencies was received.  The 19 responding 

agencies protect over 10 million persons, or about 35% of California’s urban population. 

The questionnaire is presented in Appendix A, and consisted of five main sections: 

1. Introduction – this section had no questions, but simply explained the purpose of 

the survey, that anonymity was assured, and that the survey would only take about 

ten minutes of the responder’s time (responders were typically Chief officers). 
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2. Basic Information – identities were requested (these are confidential). In some 

cases, we followed up with telephone or in person interviews. 

3. Fire following earthquake – this asked questions about the department’s 

knowledge and preparedness, and responses are discussed in detail below. 

4. Water Supply – similar to fire following earthquake section. 

5. Conclusion – responders were given a chance to provide feedback. 

The survey was intentionally limited so as to encourage responses – many more questions could 

have been asked (and in some cases were, during interviews).  

3.2.1.2 Responses to Fire following Earthquake Section 
The first question in this section was: Does your department have a quantitative estimate of 

the number of damaged buildings, fire ignitions, damage to water supply and other impacts 

a major earthquake is likely to cause? 

Five of the 19 departments responded that they had such quantitative estimates. For these 

five, responses to the next question indicated that the basis for such estimates (i.e., the scenario 

event employed) appeared in general to be consistent with current knowledge of potential large 

earthquakes in California. However, most of the five departments appeared to not have had 

specialized studies for this purpose – rather, they had simply culled information from such 

sources as the Association of Bay Area Governments (ABAG) website, or from the ShakeOut 

Scenario project (discussed above).  More specifically, their response as to the number of fire 

(for the five that responded) were: 

And, with regard to sources of information: 
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Information is from a …in August 1994 …. The number of fire ignitions may be less 

than the 19 to 26 based on seismic retrofitting and building code improvements to 

structures. In addition the number of fires that can be suppressed quickly is greater 

due to increased fire protection systems, better trained and equipped population and 

improves to water supply for firefighting. 

I used the 2008 USGS and CGS Study on Fire Following Earthquake 

methodology…has 192,000 structures with approximately 420 million total square 

feet. All of ... falls into the MMVII-IX categories for the Hayward M6.9.  Using 

MMVIII as the standard intensity, the ignition rate for fires needing fire dept response 

is 1 per every 10.5 per million sq feet. 420 million sq feet divided by 10.5 = a total of 

44 potential ignitions requiring fire dept response. The relatively contiguous 

development in ... will allow for most of these to develop into “large” fires exceeding 

the ability of one engine company to contain. Many of these could be expected to 

grow into “conflagrations” consuming entire blocks. Depending on weather 

conditions, significant potential exists for “spotting” into areas of intact housing or 

the WUI. 

Per the Shakeout Scenario and Professor Skawthorne's [sic] reports. 

Most of our training scenarios revolves around a 7-8 on the Richter scale. 

We regularly experience shaking from the large number of faults, both within and 

outside City limits. The recent Calexico Earthquake on Easter Sunday produced large 

movements felt here in the City. Off shore faults as well as our own Rose Canyon 

faults are a major concern, and depending upon severity will cause failures in our 

water system that will deprive us of our supply quickly. 

Only train for protocols to follow and damage assessment. No specific zone or 

magnitude. 

Response in #3 was based on HAZUS Analysis from October 2009. 
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Quantitative estimates are given on ABAGs website for damaged buildings, housing 

loss, damage to water supply. However, I am unable to find any quantitative 

information regarding fire ignitions. This would be very useful for planning models. 

The key finding of this series of questions was that most large urban fire departments could be 

better informed as to the specifics of the earthquake risk they are tasked to respond to. 

3.2.1.3 Responses to Water Supply Section 
The next series of questions dealt with water supply following a major earthquake, with most 

departments simply anticipating loss of normal water supply: 

Given loss of normal water supply, where would firefighters obtain water following an 

earthquake?  Specific responses included: 

Under a major earthquake, the department believes there will be a loss of water 

pressure.  If normal hydrants lack pressure, static sources (tanks, reservoirs and pools) 

will be used. 

Connection to adjacent water zones that have pressure.  Use of Disaster/Emergency 

Water Delivery System. 

The city water grid is gravity fed with back-up diesel powered pumping to refill tanks 

in the upper elevations to maintain pressure and capacity.  Additionally there are 

areas in the grid that can be cross connected to facilitate raising the pressure and 

volume.  These areas can also be shut down to lessen the water loss due to water main 
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damage. We have supplied each engine company earthquake supplies an emergency 

200gpm portable pump as to utilize the many pools in the city as potential water 

sources. 

City has a combination water system, with a Gravity fed supply. 

From Swimming pools public and private, Fire Engine water tanks, pacific ocean, 

City above ground tanks. 

Will use a combination of water tenders and drafting from available water sources. 

The Department has a whole range of secondary sources of water, and they are 

included in earthquake plans and in fire station Emergency Information Files.  Water 

tanks, draft from hydrants, dike and draft from ruptured water main runoff, dike and 

draft in flood channels, draft from lakes, reservoirs, aqueducts, streams, etc.  Water-

dropping helicopters into portable water tanks.  Water-dropping helicopters and 

retardant-dropping fixed wing aircraft also. 

gravity feed from city tanks, suction from lakes, ponds, pools 

Water tenders, drafting static reservoirs, helicopter drops, large diameter piping. 

We will try to tap into alternate water supply with … University and use stored water 

from tanks in the hills.  We have a portable tank, hard suction on every engine and 

several water tenders available in the city. 

Water Tenders, natural water sources 

We have water tenders, we will use the water already in our fire engines, and we have 

a cooperative agreement with the U.S. Navy to supply seawater from the bay through 

large manifolds at several locations for firefighting purposes. There are also several 

large cisterns that hold large amounts of water. If still accessible, they will also be 

used. 

Service interruptions may be limited to certain parts of our City. If interruptions occur, 

we have access to four Water Tenders (Tankers) in our City and can request 

additional Tenders via the Mutual Aid System and private contract.  These will be 
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filled from water system sources that are not compromised. We have no Fire 

Department "drafting" capability to obtain water with the exception of that provided 

by our two medium lift fire-rescue helicopters. These are capable of quickly drafting 

375 gallons from bodies of water (ocean, bay, rivers, lakes, swimming pools) and 

deliver directly on fires. We do have access to commercial tugboats that can pump 

into a manifold system purchased by the Port Authority to deliver large volumes of 

water from San Diego Bay. 

… has 2,285 miles of total water pipeline.  Using the…scenario…could expect to see 

627-1,045 water pipeline breaks.  Drafting, emergency wells, tenders as sources. 

We have a 3000-gallon water tender and would shuttle water to the incident. 

Although this would be very limited and would not work for multi-fire scenario. 

Elevated stored water systems. 

So, a number of departments have identified alternative sources of water.  But, in regard 

to how they would move water from those alternative water sources to the fire scene, the results 

are more mixed: 

Relay pumping is limited by quantity of large diameter hose (800 per Type I Engine). 

Current planning allows for moving of large volumes of water 6,000 to 12,000 gpm 

over distance of 2 to 3 miles.  Max. distance of Ultra Hose 12" deployment 6 miles 

with flows less than 6,000 gpm.  In addition Large Diameter Hose 5" is available for 

deployment for an additional 1.5 miles with flows less than 1,000 gpm. This 

deployment is in addition to hose carried on fire engines. Fire engines may be 

required to relay pump the 5" hose for max flow. 

In instances of needed relay pumping each engine company carries 1000 ft of 5 inch 

hose with a 4-way hydrant valve to assist in the relay operation.  There is also an 

additional 2500 ft of 5 inch hose in supply in the department 

Unless catastrophic failure occurs to the pipe system, the gravity system, if all 

cisterns are operable, should leave a sufficient supply in the hydrant system to where 

relay pumping should not have to occur. If it does, each Eng. carries 1000 ft of 3' 
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hose that can be used for supply. We have 6 first line Engines with 4 in reserve to 

accommodate relay pumping. We also have a 2000-gallon water tender. 

Up to 2.0 miles.  Our apparatus is well equipped to do so but will need various 

pumpers to do so.  This use of multiple pumpers will reduce our ability to cover the 

City.  Fires will have to be given priorities. 

Unknown how far we might have to relay water due to the large number of variables. 

Our Type 1 and 2 engines carry LDH (5") that would be used in a relay pumping 

evolution. 

Varies with part of the County.  Up to several miles if needed. 

we are only prepared for shuttling water by fire apparatus 

Unknown, but we are relatively well equipped. 

We are not well equipped for relay operations. 

Potentially long distances. 

Unknown, but it could be extensive. Not only relaying, but the road condition will 

affect this capability. We would like to obtain more portable storage capacity and the 

ability to relay water further than our firefighting hose will allow, but finances 

prevent this initiative currently. 

Length of relays depends on the number of resources (pumpers, hose and personnel) 

available to support the operation.  We are capable of relays of more than 1 mile. 

Up to three miles.  We are marginally equipped, with some PWSS. 

Relay in … is designed for up to 3 miles with available 5 inch hose, portable hydrants 

and other appliances designed therefore. 

5-10 miles,  Only 2 tenders in City 

With our water tender. 

one mile. 
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Not prepared sufficiently to cover the distance required. Lack of total hose, lack of 

water tender and lack of adequate pumpers. 

Some of the responses reflect the reality that, even using Large Diameter Hose (LDH, 

typically 5 inch in diameter), water can’t be pumped more than about a thousand feet (i.e., a few 

city blocks) without a ‘relay’ engine boosting pressure.  Moving water a mile would tie up a 

significant number of fire engines – in many smaller cities, almost the entire department.  A 

number of the responses appear to not have understood the limitations of the relay method. 

To explore this issue further, the next question asked For your typical urban fire engine 

(pumper), what is the largest diameter hose, and how many lengths (or feet) of that hose, is 

normally carried?, with only a relatively few responses: 

4" diameter hose at 800 feet. 

4" hose.... 

800 ft  2.5 inch  400 ft. 1.5 inch. 

All 11 fire engines in the department (7 fist line, 4 reserve) carry 800 to 1000 ft. of 5" 

LDH and can pump 5" hose in relay. 

We carry 700 ft of 5 inch hose on all 9 Type I fire engines. 

Furthermore, a small but crucial detail in accessing many alternative water supplies, is 

the use of “hard suction” hose, Figure 32  Hard suction hose is special metal reinforced hose that 

will not collapse when a fire engine attempts to draft water from a river or other source – without 

the reinforcement, ordinary fire house simply collapses due to the greater atmospheric pressure 

outside the hose.  The need for hard suction hose is basic and universally understood among 

firefighters, and several decades ago all fire engines, even in the heart of cities, routinely carried 

two ten foot lengths of hard suction.  However, in recent years and for a variety of reasons, many 

fire departments have chosen to no longer carry hard suction hoses on the engine – in fact, about 

two-thirds of departments surveyed: 

38 



 

 

 

 

 

 

 
 

 

 

 

In many cases, the rationale is that it is stored in the fire station, and can be quickly 

loaded onto engines when needed (overlooking the fact that, in non-earthquake situations, this is 

difficult to foresee): 

Additional detail was provided: 

10 feet hard hose. 

Not all pumpers carry hard suction. 

One hard suction for the whole Department, stored at one of our five fire stations for 

annual pump testing. 

One of our Engines has hard suction and the other engine's hard suction is available in 

the station. 

Only at the headquarters station. 

Should water supply be required from an open water source the use of the 

submersible pumps is preferred over the restrictions presented by drafting. 

We carry 3 inch hard suction on all engines. 
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We have it in some stations, but we want to reacquire this capability and spread it 

throughout our area of responsibility. 

Interviews with Chiefs indicated that even the above was an optimistic picture – for 

example, one major urban department admitted they no longer had any hard suction in the 

department! 

Most departments in fact have little practice in moving water even relatively short 

distances, and are not well-equipped to do so. 
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Clearly, not much attention is being paid to this issue – in response to the question Does 

your department have an officer specifically identified as responsible for Water Supply? Only 

one department responded “Yes”. 

Regarding Does your department have regular disaster planning meetings with the 

Water Department? 40% responded “Yes”, but ‘regular’ was defined as once a year (or less) – 

only three departments had more than one meeting a year. 

Regarding identification of where the water is to come from (i.e., specific locations of 

alternative water sources) almost all departments responded that they had done this, but 

about 50% indicated they were well identified, but in some cases not easily accessed, and in most 

cases rarely drilled.  Specific elaboration on responses included: 

We have canals, creeks, reservoirs and the […large body of water] located throughout 

our fire district.  They are marked on our response maps.  There are also swimming 

pools that could be utilized as a water resource, but there identification and 

availability would be determined on a case by case basis. 

3,000 gallon portable water tank.  Water sources are listed on GIS maps accessed by 

Mobile Data Computers on all apparatus and in map books. 
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A complete Emergency water supply system has been developed in…this began 

following the major disaster in 1906 with upgrades to present time. A complete 

Portable Water System has been developed since 1983, it has been deployed and was 

successful in the 1989 quake and fire in…plus in many other major emergencies since 

that time. It has not been completely deployed as yet in…due to budget restrictions, 

but the equipment is on hand and only needs to be assembled and completely 

equipped.  A program to do so has been developed by the current Deputy Chief of 

Support Services. 

A set of water supply points has been developed and are being tested for actual use 

once that is completed a water source list will be developed. Because of the 

specialized water supply system currently available in the Fire Dept. a transition is in 

progress to expand the normal duties of a water supply officer. Currently a 

retired/part time member of the department fulfills the role with assistance from the 

Fire Prevention Division and Operations Chief for normal water supply issues. 

GIS mapping includes alternative water sources. 

Local sites first (swimming pools, settling ponds); emergency well sites known by 

water district. 

Many of these sites are on private property, and property owners, unless in an actual 

disaster, do not allow the practice. The water is too expensive to practice with. 

Pools throughout the city; gravity fed tanks on the hillside. 

Some extra large diameter hose. 

We have reached agreements with homeowners in the community to use water from 

there swimming pools during an emergency. Markings on the curb in front of the 

home indicate this has been approved for use. 

The key finding of this series of questions were: 

Liaison with water departments is in general very infrequent. 

The normal water supplies are regarded by fire departments as seismically unreliable. 
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Chief officers have considered this, and identified alternative water sources, but 

o These sources are often not particularly well documented, nor kept up to date nor 

regularly drilled 

o The very difficult task of moving water from these sources to the fire scene is in 

many cases not well thought out, not adequately equipped and not regularly 

drilled 

3.2.1.4 Concluding Responses 
The survey concluded with two questions, the first of which was: How important is the fire 

following earthquake issue for your jurisdiction?  What key things should your department 

be doing to improve its ability to respond? The following responses were received: 

Significant issue - developing water shuttle resource plan and increasing the number 

of water tenders. 

Very important.  The department currently has the local/normal fire events covered 

and has available a water system to assist with a disaster and large emergency level 

event.  There is need to fill into the middle for other size events including wildland 

fire type events.  Currently work is progress to improve firefighting and water supply 

issues.  Flooding fighting is also a capability that has improved with new water 

system. 

It is a primary concern for triaging dispatch protocol within the EOC and a decision 

factor as to which and how many resources will be assigned to any specific incident. 

A priority with the City Manager and the Department.  Increase Public education and 

preparedness at the home and businesses throughout the city. Plan for mass shelter (in 

progress). 

It is every important to plan for firefighting operations following an earthquake.  We 

should be identifying potential water sources for use when water mains are not usable 

after an earthquake.  We also need to preplan and provide relay pumping training and 

drills. 
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It's an important issue, but not as high a priority as incidents involving life-safety 

intervention (e.g., rescues, emergency medical treatment of the seriously injured). 

Some key things we can do to improve our ability to respond are:    

o Clearly identify/define alternative water supply opportunities (access, limitations 

on use, etc.). 

o Identify availability of portable large-volume water supply systems in our 

operational area and/or Bay Area region (both public and private entities). 

o Identify those transportation routes that are likely to be restricted and/or 

inaccessible due to bridge/overpass collapse, general structural failure, or through 

use as a major evacuation route.    

o Perform multi-company drills involving drafting and relay-pumping operations. 

Huge, a top priority. Revision of the Dept. Earthquake Plan is occurring; updating fire 

station Emergency Info Files, adopting recommendations from the Multi-Agency 

Earthquake Task Force that Fire Chief…established. 

The community is filled with older homes and commercial structures. With the very 

limited resources available to the fire department things will be very difficult. 

Earthquake preparedness is an important issue, but the attention paid to it could be 

improved.  Our resources for moving water from a distance are extremely limited. 

It is very important and we need to address relay pumping and identifying a Water 

Supply Officer. 

… risk is minimal, we anticipate being a resource for others during this type of 

emergency. 

It is important, but rescue and recovery, as well as provision of emergency medical 

services take priority. 

Fire is one of the major hazards anticipated following an earthquake. Efforts should 

be made to obtain additional mobile water sources and drafting capability, but are 

hampered by fiscal challenges. Drilling on longer relay operations should be 
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conducted more frequently, but are resource intensive and difficult to perform without 

impacting emergency response coverage. 

This issue is of great importance.  We are strengthen our…adding cisterns, acquiring 

a third fireboat, attempting to construct a reinforced concrete pier for mooring and 

maintenance of the three fireboats, and have proposed funding for a six-fold increase 

in our […special water system], with additional training for select members of the 

NERT program to be able to assist uniformed members with the rapid deployment of 

this system.  We have proposed the conversion of an existing, but obsolete, water 

department pump station at Lake…into an…pump station, which, with a short 

extension of…main, would allow the 2.5 billion gallons of water in the lake to be 

added to the system.  We have a commitment from the Water Department to link a 

domestic water reservoir, which is near the principal… Reservoir and at slightly 

higher elevation and contains approximately 14 million gallons, into…Reservoir, 

which immediately will more than double the available water supply to the …. 

Could be more devastating than the shaking - up to 2% loss of built environment per 

Scawthorn study.  Budget pressures have drawn down the line force and the potential 

off-duty staff that could respond.  Attention to building code and permits will help 

minimize some ignition sources. 

The earthquake issue is very important in our city; we have an active fault that runs 

through our community.  We need to identify our emergency water supply. 

No emphasis has been put on this issue. Greatest good would be to have available 

mobile water tenders to shuttle water. 

Finally, we asked: Have we overlooked key issues?  Was this survey about on target, 

or are we off target?  How can it be improved? We received the following responses: 

There are some questions that could be worded differently. For example: Does your 

department have regular disaster planning meetings with the Water Department? We 

have a monthly emergency managers meeting for Alameda County, the water district 

is a member of the association, but we do not use this meeting for planning but for 

networking and sharing ideas. 
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Firefighting vs. drinking water - The water district may look to preserve drinking 

water over providing firefighting water during a disaster EQ type event. Water quality 

vs. fire flow requirements that may reduce water available for firefighting. A question 

to ask an urban fire department. What is your 2nd and 3rd option for fighting a 

working structure assuming water is your 1st option? It does matter what you add to 

water or how you spray it you still need water to fight urban type fires. 

I believe preparedness at the home level should be a priority. Trained and equipped 

citizens can make our job in the event of disaster or conflagration much easier. 

Not that I can think of. This survey did question the preparedness of our Department's 

ability to obtain alternate water sources after a major earthquake AND deliver that 

water for use as a firefighting tool. 

I think the key issues were addressed in the survey questions. 

Excellent work, let's keep going.... 

The issues are relevant. Perhaps questions concerning planning efforts with agencies 

other than water dept. are useful. County EMA is usually one of the key agencies. 

The survey is on target. I think you could ask about Auto Aid/Mutual aid agreements 

and collaboration with Public/Private organizations. 

We are obviously not truly prepared, but competing priorities and funding will drive 

this issue. 

On target and addressing vulnerability in response capability. 

The size of the fire protection agencies needs to be addressed, this includes, the 

number of fire stations, number of pumpers, amount of personnel available on daily 

shift per company. Fire following earthquake, pumpers are the only units that are vital, 

the ability to pump water at pressure is vital to control fires. Also vital is, do pumpers 

in each fire department carry hard suction? Please note: Not all fire pumpers in 

California carry hard suction; those that do not are not capable of using static water 

supplies that require ability to draft from suction. Also, do fire departments conduct 
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regular suction or drafting drills? This is vital to retain operational capability to draft 

when needed. Survey: The California Seismic Commission should conduct a survey 

of all Fire Departments within the State of California to determine which departments 

require their pumpers to carry hard suction hose and how often do drafting drills be 

conducted. Why have them conduct this survey? It would be more specific and 

symbolic as to the vital need to have all fire pumpers equipped with hard suction for 

emergency service. When an earthquake occurs, it is too late to go to a central 

location to locate suction hose, (if it indeed exists at all), and the need is immediate 

when pumpers are dispatched for mutual aid or service within their own communities. 

Any Fire Department not having hard suction on their pumpers would be hard pressed 

to explain this deficiency following a conflagration where static water supplies are 

available but they could not utilize them due to lack of basic equipment. 

The real key to determining need for fire suppression is the quantification of threat. I 

conducted a gross calculation using the approach developed by one researcher. There 

may be better methods that could help quantify number of ignitions and number of 

fires needing fire dept. response - that would help to give everyone (internal and 

external) an idea of how large a threat this is. Also, given the EMS and USAR 

missions of most departments, fire suppression may lag as firefighters commit to 

these incidents while fires a relatively small. 

Our city is 17 square miles; no one could afford adequate hose storage to relay pump 

water. A shuttle system from one source to multiple locations would be most cost 

effective means of covering a big problem (lots of leaks) in a big area. 

The key findings of this series of questions were 

Earthquake is seen as a very important issue for their communities, and various 

departments are pursuing a variety of efforts, aimed mostly at improving water supply 

capability.  However, these efforts are piecemeal, not coordinated and often are 

‘reinventing the wheel.’ 

In addition to firefighting water supply, a number of officers also consider post-

earthquake potable water supply to be a concern. 
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3.2.1.5 Key Findings from the Fire Department Survey 
The key finding of the survey was that larger urban California fire departments: 

See earthquake as a very important issue for their communities. 

Could be better informed as to the specifics of the earthquake risk they are tasked to 

respond to. 

Have infrequent if any communication with their water departments. 

Consider their normal water supplies as seismically unreliable. 

Given this unreliability, are pursuing a variety of efforts, aimed mostly at improving 

water supply capability.  However, these efforts are piecemeal, not coordinated and 

often are ‘reinventing the wheel’.  

Have identified alternative water sources, but 

o These sources are often not particularly well documented, nor kept up to date nor 

regularly drilled. 

o The very difficult task of moving water from these sources to the fire scene is in 

many cases not well thought out, not adequately equipped and not regularly 

drilled. 

In addition to firefighting water supply, a number of officers also consider post-

earthquake potable water supply to be a concern. 

3.2.2 Survey of Water Departments 

3.2.2.1 Overview of the Survey 
Similar to the fire department survey, larger urban water departments in California were 

surveyed on the issues of fire following earthquake, from the perspective of water supply 

reliability. The form consisting of 34 questions was prepared and distributed electronically. A 

total of 18 responses representing 18 larger urban California water departments was received. 

The 19 responding departments protect over 9.94 million persons, or about 32% of California’s 

urban population. 

The questionnaire is presented in Appendix B, and consisted of four substantive sections: 
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1. Introduction – this section had no questions, but simply explained the purpose of 

the survey, that anonymity was assured, and that the survey would only take about 

ten minutes of the responder’s time.  

2. Basic Information – identities were requested (these are confidential). In some 

cases, we followed up with telephone or in person interviews. 

3. Seismic Analysis and Upgrades – this asked questions regarding if the water 

department had done any analyses to identify seismic vulnerabilities, and/or in 

what ways seismic upgrades or retrofitting had been performed. 

4. Earthquake Impacts – what estimates were of the likely impacts an earthquake 

would have on the current system. 

5. Water-Fire Agency Interaction – similar to questions for the fire departments, ‘are 

you talking’? 

6. Conclusion – responders were given a chance to provide feedback. 

The survey was intentionally limited so as to encourage responses – many more questions could 

have been asked (and in some cases were, during interviews).  

3.2.2.2 Responses to Seismic Analysis Section 
The first question in this section was: Has your department had a quantitative estimate of the 

damage to water supply and other direct impacts to the system, that a major earthquake is 

likely to cause? This had a mixed response: 

In effect, 22% could provide a definite Yes to this question. Six (33%) of respondents 

also indicated that the analysis had been performed within the last ten years.  The scenarios 

employed were consistent with current knowledge of California’s seismicity.  The analyses that 

had been performed had been relatively comprehensive: 
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In only a few cases had the results been shared with the fire department: 

For the few water departments that had done studies, specific responses included: 

At various times we have done seismic studies of our various reservoirs and other 

structures as well as major transmission and distribution lines especially all those 

crossing the Hayward Fault. 

City distributes 11.2 MGD through 206 mile pipeline network.  Seven pressure zones 

maintained by 5 pump stations and PRVs.  Design seismic event is magnitude 6.7 

earthquake on Hayward fault (runs north-south through the city), with likelihood of 

11.3% occurrence by 2032.  Analysis showed expected 75 to 150 pipe breaks from 
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design event.  Strategy is to reinforce a 15.6 mile "backbone" transmission lines at 

2006 cost of $17.2 million.  Additional actions are to tie down hillside tanks, acquire 

flex-hose for by-passes, and stockpiling repair materials. 

Some information on the ShakeOut scenario was shared with the FD, but not in great 

detail. System analyses using…in collaboration with…University. Component 

analyses analyzed over past 40 years using different methods. 

The District’s source water is on the opposite side of San Andreas Fault vault from 

our customers.  Furthermore, about a mile and quarter of the three mile transmission 

main feeding the District is located directly above the San Andreas Fault. The 

vulnerability of other piping, water tanks, pump stations and offices have all been 

studied individually as funding became available.  The findings were discussed with 

the Fire District, but their focus is entirely firefighting which would use available 

water within a few hours.  Our concern lies with being able to serve drinking water 

during after the major earthquake when it has taken as long as two weeks for aid to 

arrive in an area similar to …. 

It is interesting to note the last response – that “their focus is entirely firefighting which would 

use available water within a few hours”.  

Encouragingly, almost all departments had had seismic upgrades or retrofits: 
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And the focus had been on key elements such as reservoirs and transmission lines, with less 

emphasis on distribution piping: 

In regard to what drove the seismic programs, 70+% responded that concern about loss of 

firefighting water was part of their motivation. Yet, this concern was quite vague, since only a 

few departments indicated they’d involved the fire department in their decision-making, or had 

quantified their concern in any manner. 

 About 60% of the seismic upgrades are still underway.  Funding and measures included: 
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Budget of $3.36 M to bolt tanks to foundation, install flex connections and provide 

structural reinforcement.  We have 20 steel tanks which got upgrades as needed. 

The upgrades to our reservoirs have been going on for some time and we just 

completed doing one last month.  One reservoir was recently doubled in size and of 

course we used the most recent seismic design for the replacement.  We also added a 

second major transmission line to feed between the two zones which are crossed by 

the fault.  We have also purchased special portable piping on a trailer that can be used 

to span the fault between fire hydrants.  We have installed sudden lost valves on most 

of our reservoirs and presently have a contract completing that project.  Being on the 

Hayward Fault we have spent quite a bit improving the seismic reliability of our 

system. The cost of our seismic upgrades has been around $30 million and of course 

we also are part of the SFPUC Hetch Hetchy system so through our rates we are 

paying more than 10% of that multi-billion improvement program. 

$1.5 million. 

$7 million. 

About $10 million. 

Overall cost for seismic specific upgrade projects was $5.5M.  Other seismic 

upgrades were part of other projects to rehab and upgrade overall facility.  Cost of 

seismic component unknown.  Seismic specific upgrade projects included retrofitting 

major transmission lines crossing fault or liquefaction zones with seismic valves 

and/or bypass manifolds. Seismic upgrades to other projects included 

constructing/retrofitting building to current design codes. 

Approx. $300,000. 

Would have to pull that information from our Engineering Department. 

There were no significant considerations in the seismic upgrading for FFE, but there 

was to a limited extent.  Many 100's of millions [of dollars] since the 1971 earthquake 

(in today’s value). 
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We replaced 2 of 14 water tanks for about $6M for 6 MG. A 3rd tank, damaged 

during the Loma Prieta Earthquake is under construction.  Staff considered fire needs 

and maximized tank sizes to the extent possible. Staff has started to construct jumpers 

in the area above the San Andreas Fault.  No work has been done yet to retrofit 

offices or pump stations. 

We retrofitted existing facilities such as restraining piping and equipment, provided 

freeboard for water tanks to accommodate sloshing waves, and added flexible 

coupling to existing piping. As facilities are rehabilitated, the components are brought 

to current seismic code requirements. 

4.6 Billion WSIP included redundancy and continuity of operation as well as seismic. 

$1,000,000+.  Seismic devices are included in all District design standards. 

The key finding of this series of questions were: 

Most larger urban water departments could be better informed as to the specifics of 

the earthquake risk they are exposed to (i.e., two thirds had had no analysis in the last 

ten years). 

Even where water departments have knowledge of the vulnerabilities of their systems, 

this is not often (only 22%) communicated to fire departments. 

Many water departments are currently addressing their seismic vulnerabilities with 

significant engineering programs. 

Overall, provision of firefighting water does not appear to be a significant criterion for water 

departments. 

3.2.2.3 Responses to Earthquake Impacts Section 
The first question in this section indicated strong agreement between fire and water departments 

– both expect major loss of water supply in a major earthquake, with the water department 

informing the fire department of the details of this about half the time. 
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However, information communicated to the fire departments appear limited – for example, 

information on when water would be restored is sparse, but available in some cases: 
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Encouragingly, some water departments have alternatives given loss of normal water supply: 

Examples of such alternatives included: 

The hydrant locations near storage reservoirs have been supplied to the Fire 

Department. 

A lot depends on whether the major Hetch Hetchy system survives.  If so then we 

think we can address any of the breaks in transmission lines crossing the fault with 

our emergency piping and our sudden loss valves. We also have emergency wells that 

can provide about half our normal needs and of course in an emergency non-essential 

use would be curtailed to provide water for fires.  We also have interties with…and… 

although they may also have damage.  We also have a major intertie through…that 

interconnects…and…to move 30MGD if one or the other had water to spare.. 

Alternative emergency water connections with the cities of…and Compton as well as 

with the…Water District. 
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City has two emergency wells and untreated water reservoirs that Fire can draw from. 

DPW Director and Fire Chief are working out how Fire can transport this water if 

firefighting area is far from storage area.  This is a difficult problem without simple 

resolution because the City does not have large tankers. 

Existing City standby water wells and reservoirs. 

Water buffalos, Non-potable water connections. 

1.  use of swimming pools; 2. use of open reservoirs with helicopters; 3. hydrant to 

hydrant emergency pumping (to lift water from lower to higher pressure zones). 

Interties with other systems could be activated.  Storage exists in part of the system. 

Emergency wells are planned. 

The severity of the quake, and consequently the damage to District piping and 

facilities, will dictate the response period.  A restoration plan would include repairing 

the main pump station, transmission main and piping serving the City’s two 

emergency shelters. 

Portable booster pumps. 

Open Reservoirs, Backup Booster Stations, Emergency interties. 

Regarding: How well and in what manner is your agency equipped to relay water, if 

the water system in the vicinity of a fire lacks pressure? 

Limited amount of hoses. 

Staff can run jumpers to high pressure hydrants. 

See above.  Also the city has purchased 7260 ft of 6" flexible hose that is stored on a 

trailer to be rapidly available to connect between fire hydrants located on either side 

of the Hayward fault in an emergency. 

Not prepared at all for this alternative. 

Not well. 

57 



 

  

 

  

 
 

  

 

 

 

 

 

 

  

 

 

1. Emergency response protocol is in place  2. Water system tied into SCADA system 

at key facilities for pressure and flow monitoring. 

Public Utilities is somewhat prepared to install 2" highline to relay water, however 

capacity and pressures would be significantly compromised under fire flow 

conditions. 

Multiple interconnections to wheel water. 

That would depend on the extent of the damage to the system and our Groundwater 

Treatment Plant. 

We are not aware of any details to relay water that have been worked out in advance. 

However, we have a highly redundant system where we commonly switch valves to 

flow water in a manner not normally used in order to relay water to critical areas. 

We have limited capacity. 

While the District has improved its connections to other agencies, we expect that our 

neighbor's piping that feeds those connections would be damaged by a large 

earthquake. The District owns and uses a potable flexible hose trailer and a truck 

mounted hose holder for deployment when emergency above ground piping is 

necessary. Currently, the flexible piping is limited to about 2,600’ of 4” and 6” 

diameter piping. Larger sizes and significantly more pipe would be needed to be 

adequately considered prepared. 

Tender trucks and mobile booster pumps will be utilized. 

… has the potential to supplement areas without domestic supply. 

Each pressure zone has backup systems, booster pumps, generators and more than 

one storage reservoir. 

This in many cases sounds good, but may be unduly optimistic, especially when it 

appears that only a fraction (~1/3) are reasonably equipped to actually move water.  

Examples of the specific equipment include: 
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We have some engine driven pumps for domestic supply but they would not provide 

fire flows in excess of 300-400 gpm. 

Hose stored in warehouse. 

In a major earthquake, the supply of water to the City from the SFPUC Hetch Hetchy 

system might be impacted, at least for a few days.  There might be local damage 

sustained by the local storage and distribution system. Depending on severity of the 

earthquake, the estimate of when firefighting water impact can range up to a few days 

of below normal flow and pressure in some parts of the city. As noted also elsewhere, 

Hayward has a very robust, reliable and redundant emergency supply plan, including 
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emergency wells and regional and local interties with neighboring agencies. 

Emergency water can be supplied as soon as any local distribution system damage 

has been isolated. 

The Fire Department had been involved with the results of the study from 2001.  Due 

to staff attrition and changes, it is uncertain how much they know regarding the loss 

of water supply. Our goal is to restore limited fire protection to within 24 hours. 

Limited fire protection is considered that 75% of the area served will be within 2,000 

feet of a serviceable hydrant with a minimum of 1,000 gpm at 20 psi residual pressure.  

In coordination with the fire department, emergency flows could be established to a 

location within 2-8 hours. Normal fire service would be expected to be restored 

within 30 days. 

6" and 4" hoses, multiple portable trailer mounted pumps.  Cooperation with FD on 

use of pumper trucks if needed for hydrant to hydrant pumping.  The Fire Department 

has some limited information on potential loss of water from experience and the 

ShakeOut Scenario, but there have not been any significant sit-down meetings to 

discuss this topic. 

The District owns and uses a potable flexible hose trailer and a truck mounted hose 

holder for deployment when emergency above ground piping is necessary.  Currently, 

the flexible piping is limited to about 2,600 ft. of 4” and 6” diameter piping.  Larger 

sizes and significantly more pipe would be needed to be adequately considered 

prepared. 

1200 feet of 2 inch fire hose; 400 feet of 4 inch fire hose. 

The key finding of this series of questions were: 

Both water and fire departments expect major loss of water supply in a major 

earthquake, with the water department informing the fire department of the details of 

this about half the time.  

Information on when water would be restored is sparse. 
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Some water departments have alternatives given loss of normal water supply, but 

only a fraction (~1/3) are reasonably equipped to actually move water.  

3.2.2.4 Water-Fire Agency Interaction 
The next series of questions had to do with water-fire agency liaison, with about half the water 

departments indicating they had an appointed person for liaising with the fire department, with 

regular meetings as shown below: 

If quarterly (seasonal) would be an appropriate schedule (and, if there’s not much to discuss, it 

can be a brief meeting), about 60% of such liaisons may be at a less than satisfactory frequency. 

Specific responses elaborating on the above question appears to reinforce this: 

The city has an Emergency Operations Center (EOC) and conducts drills quarterly. 

The Fire Department is in charge of disaster preparedness training. 

Being a city, our fire department is an integral part of our city planning and 

operations.  They are well aware of our capabilities although no one can be exactly 

aware of what will occur in a major earthquake on the Hayward fault.  We have not 

had the resources to do full scale planning exercises but they are working on one soon 

and we previously did a drill on a major earthquake on the Hayward Fault.  We do 
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use the Incident Management structure and although Fire is responsible for the overall 

plan, Public Works and specifically Utilities is an integral part of the planning. 

DPW Director and Fire Chief have discussed this problem, but do not meet on a 

regular basis and do not have resolution. 

The Public Utilities Department has a specific person responsible for emergency 

management and response.  This person works with various local, state and federal 

agencies in association with all types of emergencies. 

There are some general emergency management meetings that the…and the FD 

attend together, but it is unclear to us how much they discuss FFE. 

For the most part, emergency planning/implementation is poor between our District 

and the Fire District.  We typically find out from the City's Police Department (a 

different agency) when there is a disaster practice.  It was the Police Department, on 

our behalf, that forced a disaster practice to include damaged water facilities and 

limited water availability. 

The key findings of this series of questions were that fire and water department liaison 

are not very good, and are often somewhat indirect, through larger enterprise-wide coordination 

meetings.  Emergency water supply is not a focus. 

3.2.2.5 Concluding Responses 
The survey concluded with two questions, the first of which was: How important is the fire 

following earthquake issue for your jurisdiction?  What key things should your department 

be doing to improve its ability to respond? The following responses were received: 

It is important enough that we are working on our storage to withstand a seismic 

event ($3.36 M).  Although all of our storage facilities have been through several 

events, the retrofit work seemed prudent.  Our storage is elevated on a hill side so that 

if the tanks survive, there is a good chance we will have water.  We also have a valve 

program so that isolating a main break will likely occur without discovering 

inoperable valves. 
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Ensuring that we can provide water for firefighting needs is at the heart of our 

emergency preparedness efforts. Our fire department knows we have an excellent 

system, but again we have not exercised as much as we should and because of our 

excellent system. I believe Fire may not be able to deal with a situation where water 

is limited. 

Very important, as well as supplying water to the community. The key things include 

storing spare pipe and other appurtenances for emergency repairs and we are 

retrofitting our water system with emergency generators. We are also doing a 

preliminary survey of sites for a new above ground reservoir that we would be more 

seismically prepared. 

Develop water relaying schemes.  Determine portions of the distribution system most 

likely to fail after an earthquake.  We are currently upgrading our reservoirs to handle 

a seismic event.  We are also improving our well system in the event that our supplier 

is unable to deliver after a seismic event. Our current plan class for the ability to 

supply normal loads for an 8 hour period. With our currently approved capital 

projects we will be able to achieve this goal.  Coupled with water restrictions our plan 

is to be able to operate the water distribution system indefinitely during a curtailment 

of our traditional supply.  We also have interconnects with surrounding agencies to 

deliver or receive water during an emergency and we are currently expanding the 

number of interconnects.  We are also budgeting to have emergency power available 

at our pump stations on a fulltime basis. 

Annual scenario play quarterly discussions quarterly issue of updates to Utility 

Emergency Response Manuals. 

The issue is important to our agency.  Our agencies need to refresh/revisit the results 

of the study and ensure both Public Utilities and Fire Department staff understands 

potential scenarios and are prepared to efficiently and effectively respond. 

It is a very important issue. We should have detailed meetings on some kind of 

periodic basis to review scenarios and how to work together in an emergency. 
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Firefighting is very important to our jurisdiction, but drinking water is essential to life. 

More table top exercises. Improve mutual aide.  Federal/State must make more grants 

available for emergency equipment. 

Very important, as the 1906 quake proved. The City is currently undertaking an 

AWSS upgrade that will evaluate system condition and recommend long range 

upgrades. Infrastructure related to the piping distribution system will undergo R&R in 

first phase. 

Water for firefighting is in the top 5 categories. 

Finally, we asked: Have we overlooked key issues? Was this survey about on target, 

or are we off target?  How can it be improved? The following responses were received: 

It seems this survey was more keyed to when the fire service is not part of the same 

city structure or when the water service is not part of a city such as a separate district. 

Either way there will be more potential for lack of information sharing. 

Portable water chlorination systems and water supply to emergency hospitals. 

Your survey recognizes that water is a critical resource after a major seismic event.  It 

is important that you understand that firefighting water is a subset of the municipal 

potable drinking water supply. A major earthquake would likely knock out our 

wholesale suppliers which means the City could be without treated potable water 

supply for a week to a month.  Fire cannot drain all of the City's limited water storage 

and leave the public without drinking water for this period.  You need to consider 

alternate means of firefighting that do not rely on high-pressure water (emphasis 

added). 

There should be an industry standard methodology to conduct analysis of a water 

system based on likely seismic events.  This analysis would include the determination 

of critical facilities, focus on distribution materials most likely to fail and give the 

operator a sense of which portions of the system should be isolated immediately after 

an earthquake. …recently adopted high density polyethylene for our primary water 

main and service material. This material HDPE has proven to provide superior 
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performance during seismic events.  Our current replacement plan of 3 miles per year 

(200 mile system) focuses on cast iron which in my opinion is most likely to fail 

during an earthquake. It will take several years at this rate to replace our system. 

Questions could be asked regarding asset management and levels of service (LOS) to 

be achieved during an emergency. 

The survey seems to be on target.  An improvement may be to have both fire and 

water personnel responding together so that it generates a fuller/more accurate 

reflection in the responses. 

The survey seems to generally be on target. 

Over the years I have worked for many agencies where folks recognize that there will 

be limited water available during emergencies, but then make decisions about 

firefighting that assumes limitless water.  Each agency or region needs to answer the 

following questions: 

o How will a community’s drinking water [needs] be met after a major earthquake? 

Should we set aside water in each tank/reservoir and thus limit the water available 

to fight fires? 

o How long before outside relief can be provided to each and every person 

impacted by the major earthquake; three days, two weeks (as in the case of 

Katrina)?  

o How much water can be used to fight fires with water before some other method 

is needed.  Based on what was learned during the 1906 San Francisco earthquake 

is a community ready to employ this “other” methods and have fire fighters 

studied those possibilities to minimize losses to critical facilities? 

Explain why the emphasis was on FIRE and not loss of water service 

The key finding of this series of questions were: 

Responding water department personnel concur that fire following earthquake is a 

key problem for their communities. 
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However, they see provision of firefighting water as only one of their responsibilities, 

with provision of potable water following a disaster as at least as important. 

Given the multiple goals of a water department, many of the responders suggest more 

use be made of non-potable water sources and/or alternative firefighting methods. 

Lastly, one responder asks for an industry standard methodology to conduct analysis 

of a water system based on likely seismic events.  He might have gone farther, and 

suggested a standard methodology that analyses water systems in an integrated 

manner, considering fire following earthquake as well as potable and other needs. 

The key finding of this series of questions was that earthquake is seen as a key issue by 

most water departments, but that provision of potable water has a higher priority in some cases 

than firefighting.  

3.2.2.6 Key Findings from the Water Department Survey 
The key findings of the survey were that: 

Most larger urban water departments are not aware of the specifics of the earthquake 

risk they are exposed to (i.e., two thirds had had no analysis in the last ten years). 

Earthquake is seen as a key issue by most water departments, but that provision of 

potable water has a higher priority in some cases than firefighting.  

Even where water departments have knowledge of the vulnerabilities of their systems, 

this is not often (only 22%) communicated to fire departments. 

Both water and fire departments expect major loss of water supply in a major 

earthquake, with the water department informing the fire department of the details of 

this about half the time.  

Many water departments are currently addressing their seismic vulnerabilities with 

significant engineering programs. 

Information on when water would be restored is sparse. 

Some water departments have alternatives given loss of normal water supply, but 

only a fraction (~1/3) are reasonably equipped to actually move water.  
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Fire and water department liaison is not very good, and are often somewhat indirect, 

through larger enterprise-wide coordination meetings.  Emergency water supply is not 

a focus. 

3.3 ALTERNATIVE WATER SUPPLY SYSTEMS 

This section reviews efforts selected fire departments have undertaken, in order to assure 

adequate water supply following a major earthquake. In essence, these efforts may be 

categorized as 

a) Building a dedicated firefighting fixed in-ground water distribution system, 

separate from and redundant to the normal dual purpose municipal water supply 

system.  Such systems are often termed ‘high-pressure’ systems. 

b) Similarly, developing a system that has many attributes of the high-pressure 

system, but is portable and avoids the high capital cost of the high-pressure 

system.  Such systems are often termed ‘portable water supply systems.’ 

3.3.1 High Pressure Systems 

3.3.1.1 San Francisco AWSS 
High pressure systems were a development of later nineteenth century America, a by-product of 

whose rapid urban growth were urban conflagrations, due to highly flammable wooden 

construction, an outrun and inadequate water supply, and inadequate fire protection.  The 

solution were high pressure systems in a number of American cities, the history of which has 

been reviewed elsewhere (Scawthorn et al., 2006).  The largest of these systems was built in San 

Francisco following the 1906 earthquake and fire, and has since been extended and enhanced. 

This section briefly describes that system. 

San Francisco possesses two water supply systems: (a) the Municipal Water Supply 

System (MWSS), owned and operated by the San Francisco Water Department (SFWD) and 

serving both fire fighting and municipal (potable water) uses; and (b) the Auxiliary Water Supply 

System (AWSS), first developed following the 1906 earthquake and fire and extended 

periodically thereafter. The AWSS consists of several major components: 
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Static Supplies: The main source of water under ordinary conditions is a 10 million 

gallon reservoir centrally located on Twin Peaks, the highest point within San 

Francisco (approximately 750 ft. elevation), see Figure 33. 

Pump Stations: Because the Twin peaks supply may not be adequate under 

emergency conditions, two pump stations exist to supply water from San Francisco 

Bay - each has 10,000 gpm at 300 psi capacity.  Both pumps were originally steam 

powered but were converted to diesel power in the 1970s. 

Pipe Network: The AWSS supplies water to dedicated street hydrants by a special 

pipe network with a total length of approximately 120 miles. The pipe is bell and 

spigot, originally extra heavy cast iron (e.g., 1” wall thickness for 12” diameter), and 

extensions arc now Schedule 56 ductile iron (e.g., .625” wall thickness for 12” 

diameter). Restraining rods connect pipe lengths across joints at all turns, tee joints, 

hills and other points of likely stress, see Figure 34. 

Cisterns: Lastly, in addition to the above components, San Francisco has 172 

underground cisterns, again largely in the northeast quadrant of the City. These 

cisterns arc typically of concrete, 75,000 gallons capacity (about one hours supply for 

a typical fire department pumper), see Figure 35, Figure 36, and Figure 37. 

Fireboat Phoenix6: The pipe network has manifold connections located at several 

points along the City’s waterfront in order to permit the City fireboat Phoenix to act 

as an additional “pump station”, drafting from San Francisco Bay and supplying the 

AWSS. The Phoenix’s pump capacity is 9,600 gpm at 150 psi, about the same as 

Pump Station No. 2, see Figure 38 (PS 2 can pump to a higher pressure however). 

The AWSS is a system remarkably well designed to furnish large amounts of water for 

firefighting purposes under normal conditions and contains many special features to increase 

reliability in the event of an earthquake.  It is highly redundant, with a 10 million gallon reservoir 

6 Within days following the 1989 Loma Prieta earthquake, San Francisco Fire Department purchased a fireboat 
which Vancouver, B.C. had just discarded.  Renamed the Guardian, the fireboat is arguably the largest in North 
America, with 20,000 Igpm pumping capacity.  The Phoenix and the Guardian are both active as of this writing, 
with each alternately in service for one to several months, and the other in reserve.  Both are stationed near the foot 
of Folsom St., close to the San Francisco-Oakland Bay Bridge. 
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at the highest point in the City feeding a highly gridded and valved extensive pipe network 

specially reinforced for earthquake, two pump stations to inject seawater into the pipe network if 

needed, numerous fireboat manifolds for allowing fireboats to add their pump capacity to the 

fixed pump stations, and the entire system backed up by 172 cisterns.  The AWSS is routinely 

used for greater alarm fires in San Francisco, meaning that it is regularly ‘drilled’ and many 

firefighters are accustomed to using it.  See (Scawthorn et al., 2006) for more detail on San 

Francisco’s AWSS. 

3.3.1.2 Vancouver, B.C. DPFS 
Most US high pressure system construction halted with WW1, and US cities gradually reduced 

their conflagration problem through investment in better building codes, more reliable water 

systems and a more professionalized fire service.  Nevertheless, rapid urban growth could still 

create a fire load that outstripped the municipal water supply system.  The City of Vancouver, 

B.C. found itself in this position in the 1990s – it had experienced a large amount of high-rise 

construction in its central business district, and found the existing municipal system was not able 

to provide the fire flows demanded by the building density (and the insurance industry).  As a 

result, Vancouver undertook the construction of a Dedicated Fire Protection System (DFPS), 

closely modeled after San Francisco’s AWSS.  Construction of the system was begun in the early 

1990s, with the first pump station going online in 1995. Figure 39 and Figure 40 show the two 

pump stations, as well as a plan of the system.  

3.3.2 Portable Water Supply Systems 

While high pressure systems are highly reliable, they are also capital intensive – expensive to 

build and requiring regular maintenance.  Furthermore, they require extensions to keep up with 

urban growth. Recognition that a better alternative might exist led San Francisco Fire 

Department Asst. Chief Frank Blackburn in the 1980s to develop the concept of a Portable Water 

Supply System (PWSS). As Blackburn has observed, the idea of the PWSS was not new – hose 

wagons had been used by fire departments for a hundred years.  But, by combining the elements 

of hose tenders, the newly available Large Diameter Hose, portable hydrants, pressure reducing 

valves, gated wyes and hose ramps, he was able to develop a PWSS – a system that enabled an 

‘above ground water main system’ to be quickly put into place.  The PWSS was originally 

conceived as an extension of San Francisco’s AWSS – that is, it would extend the “reach” of the 

AWSS to the newer outer neighborhoods of San Francisco, where the AWSS did not extend. 
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The PWSS is far more than the sum of its parts – it has been used in a number of fires, including 

at the 1991 East Bay Hills fire (see above), as well as in providing potable water distribution in a 

number of instances.  

The PWSS have now been adopted by several departments in the San Francisco Bay 

Area, as shown in Figure 41.  In that figure, the yellow Vallejo FD PWSS hose tender is seen 

with a Hydro-sub, a portable pump equivalent to a fire engine in capacity.  Figure 42 and Figure 

43 show some of the elements of the PWSS.  

Most recently, the Berkeley Fire Department under the leadership of Asst. Chief Dave 

Orth has extended the PWSS using 12 inch Ultra LDH, in a system termed the Berkeley 

Aboveground Water Supply System (BAWSS), as shown Figure 43 and Figure 44. The BAWSS 

system is necessitated by the need to provide large fire flows from the Berkeley bay shore inland 

about two miles to higher elevations along Shattuck Ave and further east.  Relaying using LDH 

would have required all and more fire engines than BFD has.  

3.4 SUMMARY 

This section surveyed and interviewed selected urban fire and water departments to determine 

the current status of their preparedness for fire following earthquake.  Results of the survey were 

followed by a review of selected efforts being undertaken by fire departments, to prepare for the 

special circumstances of fire following earthquake.  The following observations may be made: 

Most larger urban fire and water departments could be better informed as to the 

specifics of their earthquake risk. 

Earthquake is recognized as a key issue by fire and water departments, although many 

water departments see provision of potable water has a higher priority in some cases 

than firefighting.  

Water department system vulnerabilities is not well understood by fire departments, 

although water and fire departments both generally believe most municipal water 

supply systems are unreliable in a major earthquake.  

Many water departments are currently addressing their seismic vulnerabilities with 

significant engineering programs.  Not discussed above are major seismic 
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improvement programs completed or underway by water utilities such as Contra 

Costa Water District, Los Angeles Department of Water and Power, East Bay 

Municipal Utilities District, San Francisco Public Utilities Commission, Metropolitan 

Water District, Santa Clara Valley Water District, to name only a few of the larger 

efforts. 

Some fire departments have vigorously addressed this issue, developing innovative 

high pressure and/or portable water supply systems.  Many have not. 

Some water departments have alternatives given loss of normal water supply, but 

only not many are reasonably equipped to actually move water a significant distance. 

Fire and water department liaison is not very good, and is often somewhat indirect, 

through larger enterprise-wide coordination meetings.  Emergency firefighting water 

supply is not a focus. 
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4 SUMMARY AND RECOMMENDATIONS 

This section first summarizes the current situation with regard to water supply for firefighting 

following earthquakes.  Recommendations are then offered for improving the current situation. 

4.1 CURRENT SITUATION 

4.1.1 Risk 

The risk is very significant.  Based on the review of historic earthquakes and associated 

fires, it should be clear to anyone that the urban areas of California in high seismicity areas – that 

is, the San Francisco Bay Area (population 7.5 million), the Greater Los Angeles area 

(population ~ 20 million), and the San Diego metropolitan area (population 3 million) – under 

adverse meteorological conditions could have very significant losses due to fire following 

earthquake.  This can be clearly seen from: 

Los Angeles Metropolitan Area 

The approximately 17 million people living in the Los Angeles-Long Beach-Riverside 

region sit atop numerous active faults, as well as being subject to a large earthquake on the San 

Andreas Fault.  A Mw 7.8 on this latter fault was the focus of the ShakeOut Scenario which was 

discussed above – estimates are 1,600 ignitions and 2,700 pipeline repair locations (for the 

LADWP system only – the entire number of breaks may in fact be several times this estimate), 

versus about 2,000 fire engines in the entire affected area. Taking these factors into account, 

estimates of losses are about $40 billion (structure only). 

There will be about as many fires as fire engines, and much less water.  Mutual aid will 

have to come from the Central Valley and Northern California, and will be delayed by disrupted 

transportation networks. 
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San Francisco Bay Area 

Earthquake and Exposure: The 7.5 million people of the Bay Area live mostly in a 

“U” bounded on the east by the East Bay (along which is the Hayward fault), on the 

west by the Peninsular (along which is the San Andreas fault) and on the south by the 

City of San Jose and other communities (which straddle the Hayward and San 

Andreas faults), see Figure 45. 

Fires: The entire Bay Area has not been modeled for fire following earthquake, but 

approximate rules of thumb indicate that for a major earthquake on either the 

Hayward or San Andreas event, that as many as five hundred ignitions would occur. 

Firefighting Resources: in the same area, there are approximately 280 fire stations. 

Water Supply Disruption: As has happened in all major earthquakes, when one of 

the above faults ruptures, water distribution lines throughout the strongly shaken area 

will rupture, especially in the softer soils along the Bay margins.  The hundreds to 

thousands of pipe breaks will quickly drain the distribution network, and also perhaps 

many hillside tanks, leaving hydrants dry. 

There will be more fires than fire engines, and much less water, despite the Bay being 

quite close.  Mutual aid will have to come from the Central Valley and Southern California, and 

will be delayed by disrupted transportation networks.  The net result of all these factors remains 

to be modeled, with the exception of the City of San Francisco. 

The situation in San Diego has not been examined, but undoubtedly has many parallels. 

Lastly, in all these locations there are many high-rise buildings.  The challenge these pose 

under normal circumstances can be seen from the 1988 First Interstate Bank Building fire, Figure 

46, the tallest high-rise building in California at the time.  Five floors were burned out, with the 

remainder of the building heavily damaged by smoke and water.  The fire required one-third of 

the entire Los Angeles City Fire Department to combat.  Discussions with senior fire officers in 

Northern and Southern California indicate their anticipated response in an earthquake to high-

rise fires will be attempt to assure safe evacuation, but not to commit to firefighting, given the 

other demands on their resources. 
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4.1.2 Readiness 

Excepting a few special measures undertaken by a few fire departments discussed above, 

earthquake readiness in most urban California fire and water departments is much less than it 

could be. This is not to say nothing is being done.  Most major water utilities in California have 

completed or are in the midst of significant seismic improvement programs (cited above, section 

0) intended to assure reliable potable water following an earthquake (and some initial limited 

disruption).  However, in most cases water utility seismic improvement programs focus on 

reservoirs, transmission lines, pump stations – that is, facilities other than the distribution 

network7.  Distribution networks, which serve the hydrants firefighters rely on for water, are not 

typically addressed due to the immensity of the challenge (hundreds to thousands of miles of 

buried pipe) and the strategy of not trying to prevent any breaks but rather to quickly repair them.  

While this is justified from some perspectives, this means that immediately following the 

earthquake, breaks will result in many hydrants (especially in the more heavily damaged areas) 

being dry.  That is, the agreement of most fire and water departments that they will lose 

firefighting water supply from the normal distribution system is justified.  In effect, post-

earthquake firefighting water supply is falling through a gap.  

This is confirmed by the surveys of fire and water departments: 

Some water departments have alternatives given loss of normal water supply, but 

only a fraction (~1/3) are reasonably equipped to actually move water.  

For most fire departments, the very difficult task of moving water from the alternative 

water sources to the fire scene is in many cases not well thought out, not adequately 

equipped and not regularly drilled 

Fire and water department liaison is not very good, and are often somewhat indirect, 

through larger enterprise-wide coordination meetings.  Emergency firefighting water 

supply is not a focus. 

Why is this?. Water departments strive to provide, but are not required to guarantee, 

firefighting water.  In general, fire and water departments follow guidelines such as those of the 

7 See http://ebmud.com/sites/default/files/pdfs/sip_annual_2005.pdf for a good description of an excellent seismic 
improvement program that however does not mention the distribution network. 
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American Water Works Association (AWWA), the National Fire Protection Association (NFPA) 

and the Insurance Services Office (ISO) that prescribe goals for fire flows, hydrant spacing, 

distribution pipeline design and fire department organization and equipment.  When these 

guidelines are followed, communities receive favorable fire insurance rates.  If prevailing 

standards have been employed and firefighting water fails, fire and water departments will 

typically have no liability for fire losses under the doctrine of “fire suppression immunity”.  A 

clear example of this was the 1991 East Bay Hills fire (discussed above) in which water supplies 

failed early and often – the local water utility was sued, but paid no claims8. 

Fire departments on the other hand are responsible for putting out the fires, and 

understand that good practice requires they identify alternative water sources.  More or less, they 

have done this. But, most have not thought out, adequately equipped or regularly drilled for the 

very difficult task of moving water from the alternative water sources to the fire scene.  Why 

not? It appears to be a combination of reduced budgets, ongoing attrition of firefighters (engine 

staffing has gone from 6 firefighters per engine, to 4 or even 3 over the last 40 years), shifting 

focus of fire departments from firefighting to emergency medical services, and more pressing 

problems than a very rare earthquake, which may ‘never’ happen. 

4.2 RECOMMENDATIONS ACTIONS AND MEASURES 

The previous section has shown that urban California has a very significant risk due to fire 

following earthquake, and that provision of post-earthquake firefighting water supply is falling 

through a gap.  This section provides recommendations for actions to address this problem, and 

suggests a possible program for the San Francisco and Los Angeles regions.  

4.2.1 Recommendation Actions 

A fundamental part of the fire following earthquake/ water supply problem is that fire and water 

department liaison is not very good, and emergency firefighting water supply is not a focus.  The 

following actions are recommended: 

1. Highlight the problem to the California Fire Service:  The first step towards 

remedying this problem is probably to discuss it within the broader California fire 

8 Personal communication, East Bay Municipal Utilities District legal counsel 
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service, particularly urban fire departments.  An excellent venue for this 

discussion would be a meeting of the Metro Chiefs (a subsection of the 

International Association of Fire Chiefs), perhaps in conjunction with the Seismic 

Safety Commission and CalEMA.  The meeting would serve to provide further 

detail on this topic, and build development of state-wide leadership on this issue. 

2. Enlist the Water Community: The next step would be to bring the water 

community into the discussion, particularly the larger urban water distribution 

agencies.  This could be accomplished via a joint meeting of key senior fire chiefs 

and water department managers, perhaps held under the auspices of the Seismic 

Safety Commission and CalEMA. 

3. Develop state-wide guidelines:  This action would be undertaken by a joint fire-

water agency task force composed of key senior urban California fire chiefs and 

water department managers, perhaps working with the Seismic Safety 

Commission and CalEMA.  Ideally, the task force would develop into a standing 

committee.  The goal would be to develop legislation similar to Article 5.9 of the 

California Emergency Services Act (2009, discussed above), which currently only 

has two relevant requirements –fire hydrant standardization, and that water 

agency disaster planning be carried out in “conjunction with related agencies, 

including, but not limited to, local fire departments”.   Basically, the legislation 

should be amended to require development of post-earthquake firefighting 

water target goals, and that water and fire agencies should develop and 

submit plans for measures intended to achieve these goals by a given date. 

4.2.2 Recommended Measures 

This section suggests a possible program of measures for the San Francisco and Los Angeles 

regions.  

San Francisco Bay Area 

As discussed above, a few fire departments in the San Francisco Bay Area have 

undertaken measures to assure reliable post-earthquake firefighting water supply.  These 

measures are the high pressure AWSS in San Francisco, and the various portable water supply 

systems developed by San Francisco Fire Department, Oakland FD, Vallejo FD and Berkeley 
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FD.  Much of the population of the Bay Area is within about 3 miles of San Francisco Bay 

(excepting southern portions of San Jose), Figure 45.  It is suggested that development of a 

regional PWSS system be explored, using standardized hose and equipment that would be 

adopted by most fire departments in the Bay Area.  Design of the system might use 5 inch LDH, 

which is already in common use, and/or in selected cases might adopt an Ultra LDH approach 

similar to Berkeley’s BAWSS.  In any event, while specifics would have to be regionally 

determined, the concept is that perhaps 100 or more PWSS units (hose tenders and appropriate 

portable pumps) be developed and acquired by the various fire departments in the Bay Area. 

Following a large earthquake, these units working together would allow movement of 

firefighting water in sufficient quantities for anticipated fires. 

Los Angeles Region 

In contrast to the San Francisco Bay Area, much of the population in Los Angeles and 

Orange counties lives relatively far from the ocean.  In certain neighborhoods, swimming pools 

serve as ‘cisterns’ but other neighborhoods, such as central Los Angeles, don’t have many 

swimming pools, see Figure 29.  It is suggested that development of a regional high pressure / 

PWSS system be explored, as shown in Figure 47 to Figure 50.  The first figure shows the large 

number of ignitions, overlaid on fire stations. Clearly a lot of water is going to be needed, 

quickly.  The next figure shows a typical larger Los Angeles storm drain channel, while Figure 

49 shows the dense network of storm drain channels, and also ground elevations – it can be seen 

that most of the high density / high ignition areas are less than 165 feet (50m) above sea level. 

Preliminary engineering calculation show that a 3 ft. diameter steel pipe, easily accommodated in 

the storm drain channel cross-section, can deliver 18,000 gpm 20 miles inland for use by fire 

engines.  Pumping capacity required would be about 2,300 hp, which is a medium-sized 

industrial diesel engine.  If a few pump stations are built along the coast, in the vicinity of Santa 

Monica, Redondo Beach, Long Beach, Seal Beach and Newport Beach, with 3 ft. diameter pipes 

going up the larger storm drain channels, and interconnected so as to be a gridded network, much 

of the high ignition / high risk area can be furnished with a redundant unlimited alternative 

firefighting water supply.  If this network is coupled with a PWSS as described above, most of 

the high risk regions can be covered. This is shown in Figure 50, which shows selected existing 

larger Los Angeles and Orange county storm drain channels (blue lines) with connectors to be 
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built (black lines) overlaid on ShakeOut scenario ignitions.  Blue buffer zones around lines 

would be areas reachable by a PWSS.  The cost of such a network would be in the many tens of 

millions of dollars, perhaps equivalent to several dozen houses.  How many houses might it save 

from fire following earthquake? 

State-wide Urban Equipment Caches 

Los Angeles has trained thousands of its citizens in earthquake preparedness under its 

CERT program (Community Emergency Response Team, http://www.cert-la.com/index.shtml ). 

San Francisco has similarly done so under its NERT program (Neighborhood Emergency 

Response Team, http://www.sf-fire.org/index.aspx?page=859 ), and many other fire departments 

have similar programs.  However, these volunteers are currently only trained and equipped for 

light search and rescue and minimal fire extinguishment.  San Francisco is now examining the 

concept of more extensive training of NERT volunteers for firefighting, and has designed a 

program to place container caches in each of its fire battalion districts, each container holding 

firefighting equipment including a portable pump and hose, see Figure 51.  A similar program is 

underway in Istanbul, Turkey, see Figure 52.  It is suggested that a standardized equipment 

container cache be developed for California, that would equip trained neighborhood volunteers 

to assist firefighters in fighting conflagrations.  
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GLOSSARY 

ASCE American Society of Civil Engineers 
AWSS Auxiliary Water Supply System (San Francisco) 
AWWA American Water Works Association 
BAWSS Berkeley Aboveground Water Supply System 
BFF Basic Fire Flow (ISO methodology) 
CalEMA California Emergency Management Agency (formerly Governor’s Office of 

Emergency Services) 
Cal Fire California Department of Forestry and Fire Protection 
CDOI California Department of Insurance 
CSS Credit for Water Supply System (ISO methodology) 
DFPS Dedicated Fire Protection System (Vancouver, B.C.) 
FEMA [United States] Federal Emergency Management Agency 
FFE Fire following earthquake 
FSRS Fire Suppression Rating Schedule (ISO methodology) 
HAZUS A multihazard loss-estimation methodology and software package developed by 

FEMA 
ISO Insurance Services Office 
LDH Large Diameter Hose 
Mw moment magnitude scale for earthquakes 
NBFU National Board of Fire Underwriters 
NFF Needed Fire Flow (ISO methodology) 
NFPA National Association for Fire Protection 
NSHMP National Seismic Hazard Mapping Project 
OES see CalEMA 
PEER Pacific Earthquake Engineer Research Center (see http://peer.berkeley.edu) 
PFRB Pacific Fire Rating Bureau (now defunct) 
PGA Peak ground acceleration, a measure of shaking intensity in an earthquake 
PGV Peak ground velocity, a measure of shaking intensity in an earthquake 
PWSS Portable Water Supply System (ISO methodology) 
TLC  Capability of Water System at Test Location 
USGS United States Geological Survey 
Vs30 the average shear wave velocity of the top 30 m of the soil column. 
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Table 1  U.S. post-earthquake Ignitions (TCLEE, 2005) based on various sources 
compiled by author (“a” indicates fire caused by aftershock) 

Year M City or Area Affected Ignitions 
1906 
1906 
1906 
1906 
1906 
1906 
1906 

8.3 
8.3 
8.3 
8.3 
8.3 
8.3 
8.3 

Berkeley 
Oakland 
San Francisco 
San Jose 
Santa Clara 
San Mateo Co. 
Santa Rosa 

1 
2 
52 
1 
1 
1 
1 

1933 
1933 
1933 

6.3 
6.3 
6.3 

Los Angeles 
Long Beach 
Norwalk 

3 
19 
1 

1952 
1957 
1964 
1969 

7.7 
5.3 
8.3 
5.7 

Bakersfield 
San Francisco 
Anchorage 
Santa Rosa 

1 
1 
7 
2 

1971 
1971 
1971 
1971 
1971 

6.7 
6.7 
6.7 
6.7 
6.7 

Burbank 
Glendale 
Los Angeles 
Pasadena 
San Fernando 

7 
9 

128 
2 
3 

1979 
1983 

6.4 
6.5 

El Centro 
Coalinga 

1 
4 

1984 
1984 

6.2 
6.2 

Morgan Hill 
San Jose 

4 
5 

1986 
1987 

5.9 
6 

N. Palm Springs 
Whittier 

2 
38 

1989 
1989 
1989 
1989 
1989 
1989 
1989 

7.1 
7.1 
7.1 
7.1 
7.1 
7.1 
7.1 

Daly City 
Berkeley 
Marin Co. 
Mountain View 
San Francisco 
Santa Cruz 
Santa Cruz Co. 

3 
1 
2 
1 
26 
1 
24 

1994 
1994 

6.8 
6.8 

Los Angeles 
Santa Monica 

77 
15 

2000 5.2 Napa 1 
2001 6.8 Seattle, WA 1 
2002 7.8 Tok, Alaska 1a 
2003 6.5 Cambrian 1 
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Table 2 Fire departments affected by the January 17, 1994, Northridge 
earthquake (source: Scawthorn et al., 1997). 

Fire Department 
Estimated 
Population 
(thousands) 

Area 
(Sq Miles) 

Number 
of Stations 

Fire 
Fighting 
Personnel 

Number 
of 
Engines 

Los Angeles City 3,400 469 104 2,865 104 
Los Angeles 
County 

2,896 2,234 127 1,842 144 

Ventura County 700 126 30 327 40 +/- 
Santa Monica 97 8 4 100 5 
Burbank 94 17 6 120 6 
Pasadena 132 23 8 150 8 
Glendale 166 30 9 167 9 
South Pasadena 25 3 1 27 2 
Beverly Hills 34 6 3 81 7 
Culver City 41 5 3 66 5 
Fillmore 12 2 1 9 1 

Table 3 Fire Following the January 17, 1994, Northridge earthquake 
(source: Scawthorn et al., 1997), 

Community 

Number of 
Earthquake-Related 

Fires 
Los Angeles City 77 
Los Angeles 
County 

∼15 

Ventura County ∼10 
Santa Monica 4 
Burbank 0 
Pasadena 1 
Glendale 0 
South Pasadena 0 
Beverly Hills 1 
Culver City 0 
Fillmore 2 
TOTAL ~110 
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Table 4 Water Usage, Balboa Blvd. fire (source: Scawthorn et al., 1997). 

Engine 8 One 1 1/2-inch siphon ejector in pool supplying approx. 100 gpm 

One 1 1/2-inch supply line laid to Engine 18 for their water source 

One 1 1/2-inch tip line with spray tip - 125 gpm 
TOTAL:  8,750 gallons 

Engine 18 One 1 1/2-inch supply line in to fill tank 

One 1-inch line with spray tip - 25 gpm 
TOTAL;  1,750 gallons 

Engine 74 One 1 1/2-inch siphon ejector in pool supplying approx. 100 gpm 
Two 1-inch lines/spray tips 50 gpm 
TOTAL:  3,500 gallons 

TOTAL ESTIMATED WATER EMPLOYED TO CONTROL/EXTINGUISH FIRES:  14,000 GALLONS 

Table 5 Comparative analysis of the Hanshin and Northridge earthquakes. 

Aspect Factor Northridge Hanshin 
Event Magnitude (Mw) 6.7 6.9 

Date (winter) Jan 17 Jan 17 
 Time 0431 0546 

Region Population (MMI 8) 1~1.5 million 2 million 
Density (pop/sq km) 1,000~1,500 4,000 

Ignitions Number (total) 110 108
 Structural Fires 86% 97% 

Rate (MMI 7) Ign/pop: 14,719 13,676 
Response FD Communications manual dispatch 
 Resources (ff/popul): 1,338 1,138 
 Stations 104 26 (Kobe)
 Traffic Congestion Minor Major 

Mutual Aid Available - not needed after 10 hrs 
Water Water System Damage Some Total? 

Cisterns Swimming Pools 946, mostly 40 tons (10 
mins) 

Wind Calm Minor 
Gas Automatic Shut-offs ? few % 70% - ineffective due to 

structl collapse 
Spread Minor Major:  5,000 bldgs 
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Table 6 ShakeOut Scenario effects on LADWP water system. 

Maximum PGA 0.3g  

Maximum  PGV 200 cm/s 

Shaking duration 55 seconds  

MMI IV to X  

Total pipe repairs 2,700  

Trunk Line repairs 150  

Serviceability 76% at 0 hours  

34% at 24 hours  

100% at 15 months 

Table 7 Estimated ignitions, large fires and final burnt SFED M7.8 ShakeOut 
scenario (12 noon 13 Nov 2008 10 mph wind low humidity). 

Est No. 
Ignitions 

Est. No. 
Large Fires 

Est. Burnt 
SFED (thous) 

Est. Burnt Bldg. 
Floor Area  

(thous. Sq. ft.) 

Imperial 131 45 negligible negligible 

Kern 167 82 negligible negligible 

Los Angeles 612 583 94 140 

Orange 206 165 37 56 

Riverside 239 157 1 2 

San Bernardino 234 151 1 2 

Ventura 18 0 negligible negligible 

Total 1,606 1,182 133 200 
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Table 8 Bounds for losses to buildings due to fire following earthquake, for the 
four CAPSS scenarios. 

25% ~ 75% Confidence Range 

Ignitions Loss  
$ billions 

Total Burnt Building 
Floor Area 
mill. sq. ft. 

San Andreas Mw 7.8 68  ~  120 $ 4.1  ~  $ 10.3 11.2  ~  28.2 
San Andreas Mw 7.2 52  ~  89 $ 2.8  ~  $ 6.8 7.7  ~  18.6 
San Andreas Mw 6.5 48  ~  70 $ 1.7  ~  $ 5.1 4.7  ~ 14.0 

Hayward Mw 6.9 27  ~  46 $ 1.3  ~  $ 4.0 3.6  ~  11.0 
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Table 9 Key factors employed in ISO FSRS. 
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Figure 1 San Francisco 1906 fire: ignitions overlaid on peak ground acceleration 
and final burnt area (black outline). 

Figure 2 Map of the 1904 San Francisco water system, with ground failures 
superimposed (source: Scawthorn and O’Rourke, 1989). 
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Figure 3 1989 Loma Prieta earthquake water system pipe breaks overlaid on 
peak ground accelerations. 

Figure 4 1989 Loma Prieta earthquake ignitions overlaid on peak ground 
accelerations, with detail for San Francisco. 
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Figure 5  Detail of the Marina fire, San Francisco, 1989 Loma Prieta earthquake, 
showing proximity of fire to Bay to North. 

Figure 6 Marina fire, 1989 Loma Prieta earthquake (source: www.sfmuseum.org). 
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Figure 7 1994 Northridge earthquake ignitions overlaid on peak ground 
accelerations. 

Figure 8 LAFD Fires, 4:31 to 24:00 hrs, January 17, 1994  (source: Scawthorn et 
al., 1997). 
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Figure 9 LADWP pipeline breaks, 1994 Northridge earthquake (source: Jeon and 
O'Rourke, 2005). 

Figure 10 North Balboa Boulevard fire,  1994 Northridge earthquake (source: 
www.americanprogress.org )(Jeon and O'Rourke, 2005). 
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Figure 11 1995 Kobe earthquake fire occurrences overlaid on peak ground 
accelerations. 

Figure 12 Aerial view, burnt area, 1995 Kobe earthquake. 
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Figure 13 2011 Eastern Japan earthquake;  ignitions overlaid on peak ground 
accelerations. 

Figure 14 Detail of Tokyo area in 2011 Eastern Japan earthquake; ignitions 
overlaid on peak ground accelerations. 
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Figure 15 2011 Eastern Japan earthquake; ignitions overlaid on population 
density. 

Figure 16 Detail of Tokyo in 2011 Eastern Japan earthquake; ignitions overlaid on 
population density. 
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Figure 17 Gas sphere ignition at Cosmo Refinery, Chiba, 2011 Eastern Japan 
earthquake (Source: www.planetsave.com ). 

Figure 18 View of fire, central Tokyo, 2011 Eastern Japan earthquake. 
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Figure 19 Japan oil refinery fire, Sendai, 2011 Eastern Japan earthquake. 

Figure 20 Kessenuma conflagration, 2011 Eastern Japan earthquake. 
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Figure 21 Foodstuffs warehouse fire, Port of Sendai, 2011 Eastern Japan 
earthquake (Source: C. Scawthorn). 

Figure 22 Interior of warehouse above, 2011 Eastern Japan earthquake (source: 
C. Scawthorn). 
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Figure 23 Damage to fire engine, Onagawa, 2011 Eastern Japan earthquake 
(source: C. Scawthorn). 

Figure 24 Rate of household water outage, 13 March 2011, Eastern Japan 
earthquake (source: S. Takada and M. Javanbarg). 
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Figure 25 Fire following earthquake process. 
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Figure 26 Fire department Operations Time Line. 

Figure 27 Plot of the major transmission pipelines in Los Angeles indicating 
system flow state and unsatisfied demands for: (a) 0 and (b) 24 hours 
after the earthquake. Predicted fire following earthquake locations, 
large fires and super conflagrations, are identified based on 
(Scawthorn, 2011b) VNC and ER are the Van Norman Complex and 
Eagle Rock Reservoir, respectively (source Davis and O'Rourke, 2011). 
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Figure 28 Ignitions (one trial) overlaid on MMI for M7.8 SOSAFE Scenario and 
Population Density by zip code, Central LA Basin (black rectangle 
corresponds to zip 90002) (source Scawthorn, 2011b). 
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Figure 29 A typical Los Angeles area, just north east of the 110-105 Freeway 
intersection, showing high density of wood buildings, typical of much 
of LA basin.  
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Figure 30 San Francisco proxy Municipal Water Supply System (i.e., potable 
water system) with estimated pipe sections with breaks shown in red, 
for San Andreas Mw 7.8 scenario.  Note that the estimation of the pipe 
breaks is a random process, so that only the general distribution, and 
not specific locations, of breaks are meaningful. 

Figure 31 Distribution of Burn Density per block (millions $) for San Andreas Mw 
7.8 Scenario. 
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Figure 32 Illustration of hard suction hose. 

Figure 33 Schematic of San Francisco AWSS. 
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Figure 34 Plan View San Francisco AWSS. 
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Figure 35 Typical San Francisco Fire Department cistern. 
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Figure 36 Typical San Francisco Fire Department cistern under construction. 

Figure 37 San Francisco Fire Department drafting from cistern (using hard 
suction hose). 
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Figure 38 San Francisco Fireboats and fireboat manifold. 
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Figure 39 Plan of Vancouver, B.C. Dedicated Fire Protection System. 
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 Figure 40 Vancouver, B.C. Dedicated Fire Protection System False Creek Pump 
Station (top) and Coal Harbor (bottom). 
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Figure 41 San Francisco, Oakland and Vallejo FD PWSS units. 

Figure 42 Detail of San Francisco Fire Department PSWW hose tender, showing 
Gleeson pressure reducing valves (red), portable hydrants (yellow, 
upper left and right), and hose ramps (yellow, lower left, slung under 
the rig). 
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Figure 43 LDH, portable hydrants (yellow) and Gleeson pressure reducing valves 
(red). Note hose ramp in upper photo. 
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Figure 44 Berkeley FD BAWSS – (top) HydroSub unit, (mid) 12 inch Ultra LDH 
being flaked out from transporter-borne container, and (bottom) hose 
being reeled back into container. 
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Figure 45 San Francisco Bay Area, population density and active faults. 

Figure 46 First Interstate Bank Building fire, 1988. 
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Figure 47 Los Angeles region; ignitions for ShakeOut Scenario (triangles) and fire 
stations. 

Figure 48 Los Angeles: one of the larger storm drain channels. 
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Figure 49 Los Angeles County storm drain channel network. 

Figure 50 Selected existing larger Los Angeles and Orange County storm drain 
channels (blue lines) with connectors to be built (black lines) overlaid 
on ShakeOut scenario ignitions.  Blue buffer zones around lines would 
be areas reachable by a PWSS. 
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Figure 51 San Francisco NERT equipment container cache. 

Figure 52 Istanbul equipment container cache being placed in a neighborhood. 
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Figure 53 Typical San Francisco block in a more built-up portion of the city. 

Figure 54 Aerial view of same block. 
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Figure 55 SFFD portable monitor deploying a water curtain (source: 
http://sfearthquakesafety.org/the-bond/firefighting-water-supply-
system/ ). 

Figure 56 Water curtains deployed to contain a city block conflagration. 
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Fire Dept Survey re Fire Following EarthquakeFire Dept Survey re Fire Following EarthquakeFire Dept Survey re Fire Following EarthquakeFire Dept Survey re Fire Following Earthquake 
1. Introduction 

This survey seeks to understand post­earthquake firefighting water supply reliability within California, and 
identify how it might be improved. 

While California is earthquake country, major earthquakes don't happen every year but wildland fires do. However, when a 
major earthquake does occur in a large California city, it may be followed by multiple simultaneous ignitions that, 
combined with loss of water supply and communications and the other demands on the fire service such as search and 
rescue and EMS, may grow into one or more major urban conflagrations. While there are many critical aspects that 
contribute to the potential for urban conflagration, loss of water supply is perhaps the most crucial issue. 

In order to address this issue, this survey is part of a project being conducted by the University of California's Pacific 
Earthquake Engineering Research Center (PEER) under the sponsorship of the California Seismic Safety 
Commission and the California Emergency Management Agency. The purpose of the survey is to understand 
emergency and alternative water supply preparedness within California, and identify how it might be improved. For further 
information on the overall project, go to Project Summary 

This survey is brief – it shouldn’t take you more than about 15 minutes to complete. Most of the questions are multiple­
choice, but some provide opportunity for you to comment, as well as your being able to make a general comment at the 
end. 

While we ask for your and your department’s identity, the results of the survey will be collated such that your individual 
specific responses will not be disclosed. The survey results will be used to formulate a general understanding of how 
reliable California's firefighting water supplies are following a major earthquake – how much they can immediately be 
counted upon for fire suppression purposes – and what measures might be instituted to improve this post­earthquake 
reliability. 

We thank you for your answers and participation in the survey, which we hope will contribute to improving California’s 
earthquake preparedness. 

Contact person for this survey is Charles Scawthorn 

2. Basic Information 

Please answer each of these questions (* indicates an answer required): 

1. What is the name of your fire department? * 

2. What size population does your department protect? 

3. What is your name? * 

* 4. What is your rank? 
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Fire Dept Survey re Fire Following EarthquakeFire Dept Survey re Fire Following EarthquakeFire Dept Survey re Fire Following EarthquakeFire Dept Survey re Fire Following Earthquake 
*5. What is your email? 

6. What is your telephone number? 

3. Fire Following Earthquake 

1. Does your department have a quantitative estimate of the number of damaged 
buildings, fire ignitions, damage to water supply and other impacts a major earthquake 
is likely to cause? 

fedc Yes 

fedc No 

fedc Kind of ­ I'll explain further below 

2. If so, what is a specific earthquake scenario you plan for? (please specify the 
earthquake fault or approximate zone, and magnitude). 

3. And, if so, about how many fires do you estimate will occur? 

4. Explain further or provide more detail if you wish 

55 

66 

4. Water Supply 

1. In a major earthquake, do you anticipate major loss of normal water supply will 
occur? 

mlkj Yes 

mlkj No 

mlkj Do not know 

mlkj I'll explain further below 
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2. If normal hydrants lack pressure, where and how will you obtain water for 
firefighting? 
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3. How far do you anticipate having to relay water, and how well equipped are you to do 
that? 
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4. For your typical urban fire engine (pumper), what is the largest diameter hose, and 
how many lengths (or feet) of that hose, is normally carried? 

55 

66 

5. Do you engines carry hard suction hose? 

mk Yes lj 

lmk No j 

6. If above answer was "No", is hard suction 'ready to go' in the stations? 

mk Yes lj 

lmk No j 

7. If you wish to explain further regarding hard suction, please do so here: 
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8. When was the last time your department practiced relaying water more than one mile? 

lmk Within last 6 months j 

mk Within last year lj 

lmk Within last five years j 

mk Do not know lj 

9. What special equipment does your department have for pumping or relaying water 
some distance? 

efd Section pipe (stored or emergency access, such as to quick connect irrigation pipe) c 

fd Large Diameter Hose, in significant quantities beyond that carried on pumpers ec 

efd Large or special pumps c 

fd Special pump stations and high pressure system ec 

efd Fire boat c 

fd Other (explain further below) ec 

efd None c 

10. Does your department have an officer specifically identified as responsible for Water 
Supply? 

mk Yes lj 

lmk No j 

mk Kind of ­ I'll explain further below lj 

11. Does your department have regular disaster planning meetings with the Water 
Department? 

lmk Yes j 

mk No lj 

lmk Do not know j 
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12. If so, how often are these meetings? 

mk Monthly lj 

lmk Quarterly j 

mk More than once a year lj 

lmk Annually j 

mk Every few years lj 

13. Has your department identified Alternative Water Supplies for post­disaster 
firefighting (for example, swimming pools, reservoirs or tanks, creeks or bays)? 

lmk Yes j 

mk No lj 

lmk Do not know j 

mk Kind of ­ I'll explain further below lj 

14. If so, are these sites tabulated or otherwise formally mapped or listed in Officer’s 
reference materials? Are these sites easily accessed? How often are these sites 
involved in department drills? 

efd Yes, they are in Officer's reference materials c 

fd No, they are not formally documented ec 

efd Yes, they are easily accessed c 

fd It is not clear that these sites are easily accessed ec 

efd Drilled more than once a year c 

fd Drilled less than once a year ec 

efd Almost never drilled c 

15. Please explain further or elaborate on any of the above questions: 
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5. Conclusion 
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Thank you very much for participating in this survey. These final set of questions allow you to identify issues we've 
overlooked, and give us feedback. 

1. How important is the fire following earthquake issue for your jurisdiction? What key 
things should your department be doing to improve its ability to respond? 
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2. Have we overlooked key issues? Was this survey about on target, or are we off 
target? How can it be improved? 
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1. Introduction 

This survey is part of a project that seeks to understand water supply reliability within California, especially in 
regard to post­earthquake firefighting, and identify how it might be made more reliable. 

While California is earthquake country, major earthquakes don't happen every year. However, when a major earthquake 
does occur in a large California city, it may be followed by multiple simultaneous ignitions that, combined with loss of 
water supply and communications and the other demands on the fire service such as search and rescue and EMS, may 
grow into one or more major urban conflagrations. While there are many critical aspects that contribute to the potential 
for urban conflagration, loss of water supply is perhaps the most crucial issue. 

In order to address this issue, this survey is part of a project being conducted by the University of California's Pacific 
Earthquake Engineering Research Center (PEER) under the sponsorship of the California Seismic Safety 
Commission and the California Emergency Management Agency. The purpose of the survey is to understand 
emergency and alternative water supply preparedness within California, and identify how it might be improved. For further 
information on the overall project, go to Project Summary 

This survey is brief – it shouldn’t take you more than about 15 minutes to complete. Most of the questions are multiple­
choice, but some provide opportunity for you to comment, as well as your being able to make a general comment at the 
end. 

While we ask for your and your agency’s identity, the results of the survey will be collated such that your individual 
specific responses will not be disclosed. The survey results will be used to formulate a general understanding of how 
reliable California's firefighting water supplies are following a major earthquake – how much they can immediately be 
counted upon for fire suppression purposes – and what measures might be instituted to improve this post­earthquake 
reliability. 

We thank you for your answers and participation in the survey, which we hope will contribute to improving California’s 
earthquake preparedness. 

Contact person for this survey is Charles Scawthorn 

2. Basic Information 

Please answer each of these questions (* indicates an answer required): 

1. What is the name of your water department or agency? * 

2. Approximately, what size population does your department or agency serve? 

* 3. What is your name? 

4. What is your position? * 

5. What is your email address? * 
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6. What is your telephone number? 

3. Seismic Analysis 

1. Has your department had a quantitative estimate of the damage to water supply and 
other direct impacts to the system, that a major earthquake is likely to cause? 

lmk Yes j 

mk No lj 

lmk Do Not Know j 

mk Sort of ­ I'll explain further below lj 

4. Seismic Analysis (cont.) 

1. If so, when was the analysis done? 

lmk in the last 10 years (i.e., post­2000)? j 

mk in the 90s? lj 

lmk in the 80s? j 

mk earlier lj 

2. If so, what earthquake scenarios were analyzed? (please specify the earthquake 
faults or approximate zones, and magnitudes). 

3. What portions of the system or facilities were analyzed? 

efd Headquarters and/or offices, warehouses and other buildings? c 

fd Major Transmission Lines? ec 

efd Terminal Reservoirs and/or Major Tanks? c 

fd Water Treatment Plant(s)? ec 

efd Pump Stations? c 

fd Local pressure or distribution reservoirs or tanks? ec 

efd Distribution System piping? c 
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4. Were the results of the seismic analysis shared with the Fire Department and/or other 
emergency responders? 

lmk Yes j 

mk No lj 

lmk Do not know j 

mk I'll explain below lj 

5. Please explain here any details of the seismic analysis you wish to share. 
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5. Seismic Upgrade 

1. Has your system (or portions of it) had seismic upgrades or retrofits? 

lmk Yes j 

mk No lj 

lmk Do Not Know j 

mk Kind of ­ I'll explain below lj 

6. Seismic Upgrade (cont.) 

1. If so, what portions of the system or facilities were seismically upgraded? 

efd Headquarters and/or offices, warehouses and other buildings? c 

fd Major Transmission Lines? ec 

efd Terminal Reservoirs and/or Major Tanks? c 

fd Water Treatment Plant(s)? ec 

efd Pump Stations? c 

fd Local pressure or distribution reservoirs or tanks? ec 

efd Distribution System piping? c 
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2. Was concern about loss of water for post­earthquake firefighting one of the concerns 
that drove the seismic upgrading? 

mk Yes lj 

lmk No ­ fire following earthquake was not explicitly considered j 

mk Sort of ­ I'll explain below lj 

3. If the above answer was Yes, then: 

efd Was a specific analysis done of fires following earthquake, to inform how and what to upgrade? c 

fd Was the fire department involved or consulted? ec 

efd Not Applicable ­ the answer was No (FFE was not considered) c 

4. Are the seismic upgrades substantially completed? 

mk Yes lj 

lmk No ­ still on­going j 

5. What was the overall cost or budget for the seismic upgrading? Also, please explain 
any details about the seismic upgrading that you wish to share (or input a website, or 
email us attachments separately ­ our email is cscawthorn@berkeley.edu). 
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7. Earthquake Impacts 

1. In a major earthquake, do you anticipate major loss of normal water supply will occur, 
in a significant portion of your service area? This might include loss of distribution 
piping pressure in one or more neighborhoods, even if transmission integrity is 
preserved. 

mk Yes lj 

lmk No j 

mk Do not know lj 

lmk I'll explain further below j 

mailto:cscawthorn@berkeley.edu
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2. If the answer is Yes, has the Fire Department been informed of where and how water 
supply may be lost? 

lmk Yes j 

mk No lj 

lmk Do Not Know j 

mk Sort of ­ I'll explain below lj 

3. If the answer was Yes, do you have estimates of when water supply for firefighting 
would be available or restored? 

lmk Yes j 

mk No lj 

lmk Do Not Know j 

mk Sort of ­ I'll explain below lj 

4. If so, what is the estimate of approximately when water supply for firefighting would 
be restored? 

lmk less than an hour j 

mk less than 6 hours lj 

lmk less than 12 hours j 

mk less than 24 hours lj 

lmk more than 24 hours j 

5. If normal hydrants lack pressure, do you have any specific alternatives for furnishing 
water for firefighting? 

mk Yes lj 

lmk No j 

mk Do Not Know lj 

lmk Sort of ­ I'll explain further below j 
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6. If so, what are the alternatives? 
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7. How well and in what manner is your agency equipped to relay water, if the water 
system in the vicinity of a fire lacks pressure? 
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8. When was the last time your department practiced relaying water more than one mile? 

mlkj Within last 6 months 

mlkj Within last year 

mlkj Within last five years 

mlkj Do not know 

9. What special equipment does your department have for pumping or relaying water 
some distance? 

fd Section pipe (stored or emergency access, such as to quick connect irrigation pipe) ec 

efd Large Diameter Hose (please enter diameter and total length your agency has, in space in next question) c 

fd Large or special pumps ec 

efd Special pump stations and high pressure system c 

fd Other (explain further below) ec 

efd None c 
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10. Please explain here any details you wish to share with us: 
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8. Water ­ Fire Agency Interaction 

1. Does your department have a person specifically identified as responsible for 
Emergency Water Supply and/or liaising with the fire department? 

lmk Yes j 

mk No lj 

lmk Kind of ­ I'll explain further below j 

2. Does your department have regular disaster planning meetings with the Fire 
Department? 

mk Yes lj 

lmk No j 

mk Do not know lj 

3. If so, how often are these meetings? 

lmk Monthly j 

mk Quarterly lj 

lmk More than once a year j 

mk Annually lj 

lmk Every few years j 

4. Please explain further or elaborate on any of the above questions: 
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9. Conclusion 
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Thank you very much for participating in this survey. These final set of questions allow you to identify issues we've 
overlooked, and give us feedback. 

1. How important is the fire following earthquake issue for your jurisdiction? What key 
things should your department be doing to improve its ability to respond? 
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2. Have we overlooked key issues? Was this survey about on target, or are we off 
target? How can it be improved? 
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Appendix C – Insurance Industry Assessment of 
Water Supply for Fire Suppression 

This Appendix provides background on the role of, and the methods employed by, the insurance 
industry in assessing municipal water supply for fire protection.   

Background 

The relationship between fire protection and insurance begin with the London Great Fire  of 
1666, prior to which London had no organized fire protection system. Subsequently, insurance 
companies formed private fire brigades to protect their clients’ property, which were identified 
with fire insurance marks.  In 1667, the City Council established the first fire insurance 
company , "The Fire Office". In the 18th and early 19th century, America followed suit, with Ben 
Franklin, George Washington and others serving as volunteer firefighters. However, it was not 
until 1853 that the first full-time paid professional fire department was established in the United 
States, in Cincinnati, OH9.  

In 1886 the state of New York created the Standard Form Fire Policy (also known as the “165 
lines”), which became the basis for virtually all fire insurance policies in the U.S.  The 
significance of the Standard Fire Policy is that it followed British insurance practice which, since 
the Great Fire of 1666, had provided cover for fire due to all causes except those specifically 
excluded.  Since earthquakes were almost non-existent in Britain, they were not specifically 
excluded in British policies, and this practice extended to all English-speaking countries, 
including the U.S.  As a consequence, while the peril of earthquake has to be specifically 
included as a rider to the building’s insurance policy, in the U.S. fire following earthquake is 
covered under the normal fire policy.   

As fire insurance companies grew, they were in need of more and more data to inform their risk 
decision-making.  This thirst for data led to the development of insurance mapmaking 
companies10, and the growth in the U.S. of numerous fire rating bureau, such as the Pacific Fire 
Rating Bureau (PFRB) headquartered in San Francisco, and the National Board of Fire 
Underwriters (NBFU, founded in 1866).  Following a spate of conflagrations including the great 

9 http://www.cincinnati-oh.gov/cityfire/pages/-6664-/ 
10 http://www.lib.umd.edu/NTL/Sanbornhistory.html 
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Baltimore fire of 1904, the NBFU expanded its scope and developed the Municipal Inspection 
and Grading System. Under that program, engineers evaluated the fire potential of many cities. 
In response, those cities improved their public fire-protection services.  By mid 20th century this 
development of and compliance with good municipal fire service practice had caused the great 
urban conflagrations of the 19th and 20th centuries, such as 1871 Chicago, 1904 Baltimore and 
1905 San Francisco, to become a thing of the past. 

In 1971 a number of underwriting service organizations, including PFRB and NBFU were 
merged into the Insurance Services Office (ISO).  As ISO notes: 

Since 1909, the Municipal Inspection and Grading System and its successors have been 
an important part of the underwriting and rating process for insurers writing personal 
and commercial fire policies. ISO’s Public Protection Classification (PPC™) Service is 
a direct descendent of the earlier grading systems. The PPC program gives insurers 
credible data to help them develop premiums that fairly reflect the risk of loss in a 
particular location… 

ISO collects information on municipal fire-protection efforts in communities throughout 
the United States. In each of those communities, ISO analyzes the relevant data using our 
Fire Suppression Rating Schedule (FSRS). We then assign a Public Protection 
Classification from 1 to 10. Class 1 generally represents superior property fire protection, 
and Class 10 indicates that the area's fire-suppression program doesn't meet ISO’s 
minimum criteria. 

By classifying communities' ability to suppress fires, ISO helps the communities evaluate 
their public fire-protection services. The program provides an objective, countrywide 
standard that helps fire departments in planning and budgeting for facilities, equipment, 
and training. And by securing lower fire insurance premiums for communities with better 
public protection, the PPC program provides incentives and rewards for communities 
that choose to improve their firefighting services. ISO has extensive information on more 
than 47,000 fire-response jurisdictions. 

With regard to water supply, ISO’s main activity is its review of available public fire suppression 
facilities via its Fire Suppression Rating Schedule (FSRS), in order  to develop a Public Protection 
Classification for fire insurance rating purposes. The FSRS measures the major elements of a city's 
fire suppression system. These measurements are then developed into a Public Protection 
Classification number on a relative scale from 1 to 10, with 10 representing less than the minimum 
recognized protection. The Schedule is a fire insurance rating tool, and is not intended to analyze all 
aspects of a comprehensive public fire protection program, nor for purposes other than insurance 
rating. 

We next briefly discuss the FSRS. 

Fire Suppression Rating Schedule (FSRS)11 

11 excerpted from http://www.isomitigation.com 
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The Fire Suppression Rating Schedule (FSRS) is a manual containing the criteria ISO uses to 
calculate a total score on a scale of 0 to 100, based on three main areas of a community’s fire-
protection program: 

Fire alarms 
Ten percent of a community’s overall score is based on how well the fire department receives 
and dispatches fire alarms. Our field representatives evaluate: 

• the communications center, including the number of operators at the center 

• the telephone service, including the number of telephone lines coming into the center 

• the listing of emergency numbers in the telephone book 

• the dispatch circuits and how the center notifies firefighters about the location of the 

emergency 

Fire department 
Fifty percent of the overall score is based on the fire department. ISO reviews the distribution 
of fire companies throughout the area and checks that the fire department tests its pumps 
regularly and inventories each engine company's nozzles, hoses, breathing apparatus, and 
other equipment. ISO also reviews the fire-company records to determine things such as: 

• type and extent of training provided to fire company personnel 

• number of people who participate in training 

• firefighter response to emergencies 

• maintenance and testing of the fire department's equipment 

Water supply 
Forty percent of the overall score is based on the community’s water supply. This part of the 
survey focuses on whether the community has sufficient water supply for fire suppression 
beyond daily maximum consumption. ISO surveys all components of the water-supply 
system, including pumps, storage, and filtration. We observe fire-flow tests at representative 
locations in the community to determine the rate of flow the water mains provide. We also 
review the condition and maintenance of fire hydrants. Last, we count the distribution of fire 
hydrants no more than 1,000 feet from the representative locations. 

These three aspects are summarized in Table 9, where it can be seen that 35% of the overall 
schedule is weighted towards adequacy of water supply. 

Adequacy of Water Supply and Needed Fire Flow 
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In the FSRS, the adequacy of water supply is scored as ratio of the sum of the furnished water 
supply from hydrants or cisterns at various locations, termed Capability of Water System at Test 
Location at location “i” (ΣTLCi) to the sum of Needed Fire Flows (ΣNFFi).  That is, 

and the factor of “35” in the first equation reflects the 35% weight assigned to the Credit for 
Supply System (CSS).  In this, TLC is the minimum of NFF, or the Supply Works Capacity (i.e., 
the capacity of water sources), or the Mains Capacity (i.e., the capacity deliverable by the water 
main system) or the Hydrant Distribution (i.e., the capacity deliverable by hydrants within 1,000 
ft. of the location). 

The primary guide for determination of the water supply needed for public fire protection 
– that is, the NFF – is the ISO Guide for Determination of Needed Fire Flow (“Guide”) 
which can be obtained online at http://www.isomitigation.com/downloads/ppc3001.pdf . 

The Guide is 34 pages in length, and only key points are excerpted and summarized here.  As the 
Guide’s Foreword notes: 

ISO has prepared this guide as an aid in estimating the amount of water that should be 
available for municipal fire protection. ISO calls this the needed fire flow. This 
publication is only a guide and requires knowledge and experience in fire protection 
engineering for its effective application. 

and its Preface states: 

ISO is the premier source of information, products, and services related to property and 
liability risk. For a broad spectrum of types of insurance, ISO provides statistical, 
actuarial, underwriting, and claims information and analyses; consulting and technical 
services; policy language; information about specific locations; fraud-identification 
tools; and data processing. In the United States and around the world, ISO serves 
insurers, reinsurers, agents, brokers, self-insured, risk managers, insurance regulators, 
fire departments, and other governmental agencies. 

One of ISO's important services is to evaluate the fire suppression delivery systems of 
jurisdictions around the country. The result of those reviews is a classification number 
that ISO distributes to insurers. Insurance companies use the Public Protection 
Classification (PPC™) information to help establish fair premiums for fire insurance – 
generally offering lower premiums in communities with better fire protection. 

ISO uses the Fire Suppression Rating Schedule (FSRS) to define the criteria used in the 
evaluation of a community's fire defenses. Within the FSRS, a section titled "Needed Fire 
Flow" outlines the methodology for determining the amount of water necessary for 

4 

http://www.isomitigation.com/downloads/ppc3001.pdf


 

  

 

 

 
 

 

  

  

 

 

providing fire protection at selected locations throughout the community. ISO uses the 
needed fire flows to: 

1. Determine the community's "basic fire flow." The basic fire flow is the fifth highest 
needed fire flow in the community. ISO uses the basic fire flow to determine the 
number of apparatus, the size of apparatus fire pumps, and special fire-fighting 
equipment needed in the community. [emphasis added] 

2. Determine the adequacy of the water supply and delivery system. ISO calculates the 
needed fire flow for selected properties and then determines the water flow capabilities at 
these sites. ISO then calculates a ratio considering the need (needed fire flow) and the 
availability (water flow capability). ISO uses that ratio in calculating the credit points 
identified in the FSRS. 

ISO developed the needed fire flow through a review of actual large-loss fires. ISO 
recorded the average fire flow and other important factors, including construction type, 
occupancy type, area of the building, and exposures. Those factors are the foundation of 
the needed fire flow formula. 

The following pages include a number of excerpts from another ISO document, the 
Specific Commercial Property Evaluation Schedule (SCOPES). ISO uses the SCOPES 
manual to weigh features of individual properties for the purpose of defining the 
building's vulnerability to fire loss. Insurers also use this information in their 
underwriting and ratemaking decisions. 

To estimate the amount of water needed to fight a fire in an individual, nonsprinklered building, 
ISO uses the basic formula: 

NFF = (Ci)(Oi)[(1.0+(X+P)i] 

where 

NFFi = the needed fire flow in gallons per minute (gpm) 

Ci = a factor related to the type of construction = 18F (Ai)0.5, where  Ai is the effective 
area of the subject building (sq. ft.) and F is a coefficient related to the class of 
construction 

Oi = a factor related to the type of occupancy 

X = a factor related to the exposure buildings 

P = a factor related to the communication between buildings 

That is, the NFF is essentially a function of the size of the building (Ai), its material of 
construction (F), its occupancy (Oi), neighboring or ‘exposure’ buildings (X) and potential for 
pathways for fire between buildings (communication, P). 

The NFF as calculated using this equation is constrained, as follows: 

• The value of Ci shall not exceed 

o 8,000 gpm for Construction Class 1 and 2 

o 6,000 gpm for Construction Class 3, 4, 5, and 6 
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o 6,000 gpm for a 1-story building of any class of construction 

• The value of Ci shall not be less than 500 gpm. 

• ISO rounds the calculated value of Ci to the nearest 250 gpm. 

where Class 1 is wood frame construction, Class 6 is fire-resistive construction), and 
increasing class generally corresponds to lower combustibility. 

• The maximum needed fire flow is 12,000 gpm. The minimum is 500 gpm. 

• ISO rounds the final calculation of needed fire flow to the nearest 250 gpm if less than 

2,500 gpm and to the nearest 500 gpm if greater than 2,500 gpm. 

• For 1- and 2-family dwellings not exceeding 2 stories in height, ISO uses the following 

needed fire flows: 

DISTANCE BETWEEN BUILDINGS NEEDED FIRE FLOW 

More than 100' 500 gpm 
31-100' 750 gpm 
11-30' 1,000 gpm 
10' or less  1,500 gpm 

• For other types of habitational buildings, the maximum needed fire flow is 3,500 gpm. 

Substantial data and expertise is involved in properly determining the values of these factors, and 
the reader is referred to the Guide for more detail. 

While essentially empirical, the basic NFF calculation captures relevant factors in a rational 
approach, and has proven reasonably accurate and conservative in practice. 

The NFF is a subsidiary calculation that feeds into ISO’s Fire Suppression Rating Schedule 
(http://www.isogov.com/services/infrastructure/docs/FSRSWaterSupplySection.pdf ), which The FSRS has 
three main parts — Fire Alarm and Communications (10%), the Fire Department (50%), and 
Water Supply (40%) — which reference nationally, recognized standards developed by the 
National Fire Protection Association and the American Water Works Association.  Of particular 
relevance here is section 604 of the Water Supply portion of the FSRS, which states: 

604. FIRE FLOW AND DURATION: The fire flow duration should be 2 hours for 
Needed Fire Flows (NFFi) up to 2,500 gpm, and 3 hours for Needed Fire Flows of 3,000 
and 3,500 gpm. 

Therefore, if the NFF is determined to be 2,500 gpm, two hours duration corresponds to 300,000 
gallons, while 3 hours duration at 3,500 gpm corresponds to 630,000 gallons.  For fire flows in 
excess of 3,500 gpm, the specified durations is four hours so that, for example, if the NFF is the 
maximum of 12,000 gpm and it is required for example for 4 hours, the total required amount of 
water would be  2.88 million gallons. 
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Note that most urban fire engines today typically have a maximum pumping capacity of 1,200 to 
1,500 gpm, so that a fire flow duration corresponding to a NFF of 2,500 gpm corresponds to two 
engines pumping at capacity for two hours, three engines for three hours for fire flow duration 
corresponding to a NFF of 3,500 gpm, and 12,000 gpm would correspond to about ten fire 
engines pumping at capacity for four hours. 

NFF and Earthquake 

All of the above has been by way of background, to illustrate how fire departments and insurers 
approach the issue of water supply for ‘normal’ situations – that is, a fire in a building when fire 
engines can arrive in a timely manner. 

However, review of the ISO methodology indicates that the FSRS and the Guide do not 
mention or consider earthquake and the associated numerous simultaneous ignitions that will 
each require fire department response.  Overwhelming of fire alarm and telephone reporting is 
not considered. Damage to water mains and fire hydrants is not considered.   The FSRS is 
predicated on timely arrival of firefighters at each fire, who will readily be able to access the 
needed fire flow.  As has been observed in numerous earthquakes12, some fires will not be 
responded to in a timely manner, and water will not be readily available.  These two factors – 
delayed response and inadequate water supply – were long ago identified by the National 
Association for Fire Protection (NFPA) as two key factors leading to urban conflagration13. 

As an example, examine a block in a more built-up neighborhood of San Francisco, CA, Figure 
53.  Using the procedures outlined in the ISO Guide, the NFF for a typical building on this street 
is determined to be 2,500 gpm, which is a reasonable estimate of the fire flow that would be 
required to contain and suppress a fire in one of these nearly 100 year old wood framed 
buildings, given timely fire engine response. 

On the other hand, if a response is delayed for an hour or so, it is quite likely given the type of 
construction in this neighborhood that much of one or more city blocks would be full involved in 
fire.  In such a case, the only option for the fire department would be to try to prevent fire 
spreading beyond the block or two fully involved.  The tactic to do this would be to deploy fire 
engine master streams in a ‘water curtain’, Figure 55.  The maximum distance a fire engine or 
portable monitor can deploy a water curtain is approximately 200 ft.14.  Given that the block is 
about 450 ft. long by about 285 ft. wide, the block’s perimeter is therefore about 1,470 ft., so that 
between six and eight fire engines would be required to entirely surround one block with a water 
curtain.  With each fire engine pumping 1,200 to 1,500 gpm, the total post-earthquake 
conflagration required fire flow would be in the range of 7,200 to 12,000 gpm, as shown in 
Figure 56.  

12 TCLEE (2005) Fire Following Earthquake. Scawthorn, C., J. M. Eidinger, A.J. Schiff (Editors), Technical Council on Lifeline 
Earthquake Engineering Monograph No. 26, pp. 345pp. American Society of Civil Engineers, Reston. 

13 NFPA (1951) Conflagrations in America since 1900: a record of the principal conflagrations in the United States and Canada 
during the first half of the twentieth century. National Fire Protection Association, Quincy, MA. 
14 Freeman, J. R. (1889) Experiments relating to hydraulics of fire streams. Trans. American Society of Civil Engineers,, XX!, 
pp. 303-451 and Discussion pp. 452-482,. 
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Admittedly, the San Francisco example selected, a densely built neighborhood of older wood 
frame buildings (often termed a ‘conflagration breeder’ in the fire service) is somewhat extreme, 
but it makes the point that large earthquakes will lead to large fires in large cities in California, 
which require much more water than required under non-earthquake conditions. 

Conclusion 

ISO’s FSRS and Guide for Determination of Needed Fire Flow, while excellent tools for 
economical fire and water systems under ordinary conditions, are shown by this example to 
significantly underestimate the required fire flow for the conflagration situations that may exist 
following a major earthquake. 

It is of value to note that the value of buildings and contents in the one city block shown in 
Figure 56 is on the order of $100 million, all of which is fully insured for fire, including fire 
following earthquake. 
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